PROGRAMMING ASSIGNMENT 1

DUE: Tuesday November 2, 11:59 PM. No late submissions allowed.
DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies.

Problem Description

Problem Statement

For this assignment, you are asked to implement an algorithm to solve Problem 2 of Assignment 4. Let us recall the problem:

Suppose you have n people lined up waiting for consultations. Person i needs q_i minutes for their consultation, where q_i is a positive integer. There are t rooms in which the consultations can be held and each room can be used for a maximum of L minutes. The goal is to assign the people to the rooms so that the first n_1 go to room 1, the next n_2 go to room 2, \ldots, the last n_t go to room t. Because you want to minimize contact during the pandemic, you want to leave gaps between successive people using the same room. For example, if $L = 10$ and room 1 will be used for $i = 1, 2, 3$ with $q_1 = 4, q_2 = 1, q_3 = 2$ then since $q_1 + q_2 + q_3 = 7$ there are 3 spare minutes, and you would have a gap of 1.5 minutes between person 1 and person 2, and a gap of 1.5 minutes between person 2 and person 3.

The objective function is to maximize the minimum gap between any two people. In other words, let G be the smallest gap between any pair of people that are scheduled consecutively in the same room. The goal is to choose n_1, n_2, \ldots, n_t so that G is maximized.

Hints: You might pre-compute $G(i, j) =$ the gap value obtained by placing people $i, i+1, \ldots, j$ into one room. After that, use dynamic programming and aim for $O(nt)$ subproblems.
Input Format
The first line of input consists of integers \(n \), \(t \), and \(L \), each separated by one space.
The second line of input consists of \(n \) integers \(q_1, q_2, \ldots, q_n \), each separated by one space.

Output Format
If there does not exist any valid room assignment with \(G \geq 0 \), output IMPOSSIBLE.
Otherwise, output two lines. On the first line, output the optimal value of \(G \). On the second line, output \(t \) non-negative integers \(n_1, n_2, \ldots, n_t \), separated by one space, so that assigning the first \(n_1 \) people to room 1, the next \(n_2 \) people to room 2, and so on, is a valid room assignment that attains the optimal minimum gap.

The checker is case-sensitive, so please output IMPOSSIBLE in all caps. End each line with no trailing spaces and one newline character.

IMPORTANT: On a given test, if there exists a valid room assignment with \(G \geq 0 \), your output will be considered correct if and only if:

- The smallest gap you find has an absolute or relative error at most \(10^{-5} \). Specifically, let \(G_{\text{out}} \) be the optimal value of \(G \) you output and \(G_{\text{ans}} \) be the correct optimal value of \(G \), then
 \[
 \frac{|G_{\text{out}} - G_{\text{ans}}|}{\max(1, G_{\text{ans}})} \leq 10^{-5};
 \]
 and

- The output room assignment has smallest gap \(G_{\text{ans}} \). Again, we accept absolute or relative error up to \(10^{-5} \), so if your room assignment has smallest gap \(G \), it should hold that
 \[
 \frac{|G - G_{\text{ans}}|}{\max(1, G_{\text{ans}})} \leq 10^{-5}.
 \]

In particular, if there is more than one room assignment that attains the optimal \(G \), you can output any of them.

Constraints
For all test cases, \(1 \leq n \leq 1000, 1 \leq t \leq 50, 1 \leq L \leq 10^6, 1 \leq q_i \leq 1000. \)
In addition, it holds that \(t < n \) (so that the optimal \(G \) will not be infinity).

Sample Input 1
6 2 120
10 30 40 20 80 10
Sample Output 1
6.6666666667
4 2

Sample Input 2
5 3 50
30 30 30 30 30

Sample Output 2
IMPOSSIBLE

Submission Instructions

- Submit your solution on Marmoset.
- You can choose to code in either C++ or Python.
- Name your program `prog1.cpp/prog1.py`.
- **Time limit:** 2 seconds (C++) / 6 15 seconds (Python) for each test case.
- Compilation command for C++: `g++ -std=c++14 prog1.cpp -o prog1`.
- Execution command for Python: `python3 prog1.py`.
- Read from standard input and write to standard output.
- There will be several test cases, worth a total of 30 points. The public tests are worth 8 points and the secret tests are worth 22 points. The public tests (input only, not the answer) will be made available under a separate file.
- We will take the submission with the highest score. Please, however, refrain from excessive submissions.
- General collaboration policy applies. Please acknowledge your collaborator(s) by adding a comment in the beginning of your code.
- FAQ and updates will be posted on Piazza when necessary.

(More) Hints

- The last public test is a large test. Use it to help gauge your solution’s efficiency and identify errors like memory error, stack overflow, etc.
- The format string for outputting a floating point number corrected to [p] decimal places is `%.[p]f`.