Graph Algorithms
Applications of DFS

Detecting cycles in directed graphs

- **Lemma 1**: A graph G is acyclic if and only if a depth-first search of G yields no back edges.
- **Equivalent to Lemma**: A directed graph has a (directed) cycle iff DFS has a back edge.
Detecting Cycles in graphs

- **Lemma 1**: A graph G is acyclic if and only if a depth-first search of G yields no back edges

- **Proof \Rightarrow** By contradiction.
 - Suppose DFS generates a back edge (u, v).
 - Therefore, v is an ancestor of u in the DFS tree
 - There is a path from v to u and the edge (u, v) completes the cycle → contradiction: We assumed G is acyclic
 - \Leftarrow By contradiction. Suppose G contains a cycle
 - v: the first vertex to be discovered in the cycle
 - All the vertices on the cycle must be discovered before we finish v. When we test edge (u, v), it will be a back edge
 - (u, v) is a back edge → contradicts the assumption that DFS of G yields no back edge
Topological Sorting

- **Input:**
 - A Directed Acyclic Graph (DAG), G

- **Output:**
 - a linear ordering of all vertices such that if (u,v) is an edge in G, then u appears before v in the ordering
 - Linear ordering is called topological ordering

- **Application:** prerequisite among courses
Topological Sorting: Application
Topological Sorting: First Algorithm

- repeatedly find a node with no incoming edges, remove it, and add it to the result
 - This algorithm is discussed in Exercise 22.4-5 of CLR (3rd edition)
Topological Sorting

Ordered list:
Topological Sorting

Ordered list: u
Topological Sorting

Ordered list: \(u \ v \)
Topological Sorting

Ordered list: u v
Topological Sorting

Ordered list: u v w
Topological Sorting

Ordered list: u v w
Topological Sorting

Ordered list: u v w z
Topological Sorting

Ordered list: u v w z y
Topological Sorting

Ordered list: u v w z y x
Topological Sorting

Ordered list: u v w z y x
Topological Sorting: First Algorithm: Runtime

```python
def topologicalSort_FirstAlg(G):
    result=[]
    while G is not empty:
        v=a vertex in G with indegree 0
        add v to result
        remove v and its edges from G
    return result
```

Runtime: $O(V^2+E)$
Can we do better?
- By changing the way finding for each vertex with indegree 0 is done
- Use a queue/stack to keep track of vertices with indegree 0
- Runtime: $\Theta(V + E)$
Topological Sorting: First Algorithm: Runtime
Topological Sorting: First Algorithm: proof of correctness

- Whenever a node v is added to the result, it has no incoming edges:
 - v never had any incoming edges, in which case adding v to result cannot place v out of order
 - All of the predecessors of v have already been placed into result, and v comes after all of them

- The algorithm does not get stuck, since every nonempty DAG has at least one source (a node with no incoming edges)
 - Why?
Topological Sorting: An algorithm Based on DFS

```python
def TopologicalSort(G):
    # G must be a DAG
    Run DFS(G) to compute finish[v] for all v in V
    Output the vertices in decreasing order of their finish time
    return the linked list
```
Topological Sorting: An algorithm Based on DFS

Ordered list:

Ordered list:
Topological Sorting: An algorithm Based on DFS

Ordered list:
Topological Sorting: An algorithm Based on DFS

Ordered list:
Topological Sorting: An algorithm Based on DFS

Ordered list:
Topological Sorting: An algorithm Based on DFS

Ordered list: x
Topological Sorting: An algorithm Based on DFS

Ordered list: y x
Topological Sorting: An algorithm Based on DFS

Ordered list: v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: $v \ y \ x$
Topological Sorting: An algorithm Based on DFS

Ordered list: \(u \ v \ y \ x \)
Topological Sorting: An algorithm Based on DFS

Ordered list: u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: z u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list: $w \ z \ u \ v \ y \ x$
Topological Sorting: An algorithm Based on DFS

Ordered list: w z u v y x
Topological Sorting: An algorithm Based on DFS

Ordered list:
DFS-based topological Sorting: proof of correctness

- For any pair of distinct vertices u and v
 - if \((u,v) \in G\) then \(\text{finish}[v] < \text{finish}[u]\) → u appears before v in the ordering

- **Proof.** Consider any edge \((u, v)\). There are two cases:
 - \(d[u] < d[v]\) DFS discovers u before v
 - When exploring v, v cannot be gray, since then v would be an ancestor of u and it means there is a cycle in the graph while we have an acyclic graph.
 - Therefore v is either
 - WHITE
 - Vertex v becomes a descendant of u → \(f[v] < f[u]\)
 - BLACK
 - It has been finished, but u is yet to be finished → \(f[v] < f[u]\)
 - \(d[v] < d[u]\)
 - Since the graph is acyclic, u is not reachable from v
 - u cannot be a descendant of v
 - By the parenthesis property, the intervals \([d[v], f[v]]\) and \([d[u], f[u]]\) must be disjoint.
 - The only possibility left is \(d[v] < f[v] < d[u] < f[u]\)
Since the graph has no cycle u is an ancestor of v

\[\text{finish}[u] > \text{finish}[v] \]

\[d[u] < d[v] < f[v] < f[u] \]
Strongly Connected Graphs
Strongly Connected Components
Connected Components: Undirected Graph

- In an undirected graph $G = (V, E)$ two vertices $u, v \in V$ are connected iff there is a path from u to v
- An undirected graph is connected if every vertex is reachable from all other vertices
- A connected component of G is a set $C \subseteq V$ which has the following properties:
 - C is nonempty
 - For any $u, v \in C$: u and v are connected
 - For any $u \in C, v \in V - C$: u and v are not connected
Connected Components: Undirected Graph

![Connected Components Diagram](image-url)
Connected Components: Undirected Graph

- How to find connected components in an undirected graph?
 - Using DFS
 - DFS(G, u) finds all nodes reachable from u in the graph
Strongly Connected Components
Strongly Connected Components

- In a **directed graph** G
 - v is reachable from u iff there is a path from u to v.
- In an undirected graph, if there is a path from u to v, there is also a path from v to u.
- In a directed graph, it is possible for v to be reachable from u, but for u not to be reachable from v.
- How would we generalize the idea of a connected component to a directed graph?
Strongly Connected Components

- Let $G = (V, E)$ be a directed graph
- Two vertices $u \in V$ and $v \in V$ are **strongly connected** iff v is reachable from u and u is reachable from v
- A **directed graph is strongly connected** if and only if every pair of vertices is strongly connected.
- A **strong connected component** (or SCC) of G is a maximal strongly connected subgraph of G.
- A **SCC** of G is a set $C \subseteq V$ such that:
 - C is not empty
 - For any $u, v \in C$: u and v are strongly connected
 - For any $u \in C$ and $v \in V - C$: u and v are not strongly connected.
Strongly Connected Components
Strongly Connected Components
Strongly Connected Graphs

Input: A directed graph $G = (V, E)$

Output: Yes if G is strongly connected; no otherwise

Brute-force solutions:

- For each pair u, v check whether there is a path from u to v, v to u
 - Runtime: $O(n^2(n+m))$
- For each vertex v, whether all vertices can be reached from v
 - Runtime: $O(n(n+m))$

- What if the graph was undirected?
Strongly Connected Graphs: Observation

Lemma. G is strongly connected if and only if every vertex \(v \) is reachable from \(s \) and \(s \) is reachable from every vertex \(v \), where \(s \) is an arbitrary vertex

- \(\Rightarrow \) by the definition of a strongly connected component
- \(\Leftarrow \) For any \(u,v \in V \), we obtain a path from \(u \) to \(v \) by combining a path from \(u \) to \(s \) and a path from \(s \) to \(v \) \(\rightarrow \) G is strongly connected

- How do we check whether \(s \) is reachable from every vertex \(v \in V \)?
 - Idea: Reverse the graph
 - Claim: Given \(G = (V, E) \), we reverse the direction of all the edges to obtain \(G^T = (V, E^{-}) \). Then, there is a path from \(v \) to \(s \) in \(G \) if and only if there is a path from \(s \) to \(v \) in \(G^T \). So, \(s \) is reachable from every \(v \in V \) in \(G \) if and only if every \(v \in V \) is reachable from \(s \) in \(G^T \)

- Example
Strongly Connected Graphs: Algorithm

- Check whether all vertices in G are reachable from s by one DFS
- Reverse the direction of all the edges in G to obtain G^T
- Check whether all vertices in G^T are reachable from s by one DFS
- If both yes, return “SC” graph, otherwise, return “not SC”

Runtime: $O(m+n)$
Strongly Connected Components
Strongly Connected Components

- **Brute-force:**
 - Consider all possible subset of vertices and check using the previous algorithm
 - Exponential: at least compute all subsets

- **Solution 2:**
 - For each pair \((u,v)\)
 - \(C_1 = \text{DFS}(u)\) to find if there are path between \(u\) and \(v\)
 - \(C_2 = \text{DFS}(v)\) to find if there are path between \(u\) and \(v\)
 - Build the SCCs accordingly
 - Runtime: \(O(n^2(n + m))\)
 - We need to run DFS on each pair of nodes
Strongly Connected Components: pseudocode

def StronglyConnectedComponents(G):
1. DFS(G) # to compute finish time f[u] for each vertex u
2. Compute G^T
3. Call DFS(G^T) # traverse vertices in decreasing order of finish time
4. The SCCs are the different DFS tree in G^T
1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u.
Strongly Connected Components: Example

1. DFS(G) to compute finish time \(f[u] \) for each vertex \(u \)
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time \(f[u] \) for each vertex \(u \)
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time \(f[u] \) for each vertex \(u \)
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
Strongly Connected Components: Example

1. DFS(G) to compute finish time f[u] for each vertex u
2. Compute G^T
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
2. Compute G^T
3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
2. Compute G^T
3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
2. Compute G^T
3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
2. Compute G^T
3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time \(f[u] \) for each vertex \(u \)
2. Compute \(G^T \)
3. DFS\((G^T)\) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time $f[u]$ for each vertex u
2. Compute G^T
3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Example

1. DFS(G) to compute finish time \(f[u] \) for each vertex \(u \)
2. Compute \(G^T \)
3. DFS(\(G^T \)) traverse vertices in decreasing order of finish time
1. DFS(G) to compute finish time $f[u]$ for each vertex u

2. Compute G^T

3. DFS(G^T) traverse vertices in decreasing order of finish time
Strongly Connected Components: Correctness

- The component graph $G^{SCC} = (V^{SCC}, E^{SCC})$:
 - Is obtained by contracting every strongly connected component into a single vertex.
 - The vertices of G^{SCC} are the SCCs of G.
 - (C_1, C_2) is an edge in G^{SCC} if and only if $(u,v) \in E$ and $u \in C_1$ and $v \in C_2$.
Strongly Connected Components: component graph
Strongly Connected Components: Correctness

- **Lemma.** The component graph is a Directed Acyclic Graph
- **Proof idea.** If not, then two SCCs would collapse into one
Strongly Connected Components: Correctness: notations

- The discovery and finish time times for a set $U \subseteq V$:
 - $f(U)$: The finish time of a set $U \subseteq V$ is the largest finish time of any vertex $v \in U$
 - $d(U)$: The discovery time of a set $U \subseteq V$ is the smallest discovery time of any vertex $v \in U$
Strongly Connected Components: Correctness

The component graph with discovery and finish times for each component:

- a (d=3/10, f=1/16)
- b (d=2/15, f=2/15)
- c (d=5/8, f=11/14)
- d (d=12/13, f=12/13)
- e (d=4/9, f=3/10)
- f (d=6/7, f=4/9)
- g (d=5/8, f=5/8)
- h (d=6/7, f=6/7)
Lemma. Let C and C' be distinct SCC in directed graph $G=(V, E)$. Suppose that there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$. Then $f(C) > f(C')$

Proof. There are two cases:

- **Case 1:** We reached C' before C in the first DFS. There are no paths from C' to C.
 - Since there is a path from C to C', there cannot be a path from C' to C otherwise there would be cycle in the component graph which is a DAG. So we finish exploring C' and never reach C and C is explored later there
 - $\text{finish}(C) > \text{finish}(C')$

- **Case 2:** Suppose the first vertex v discovered is in C. Since vertices in $C \cup C'$ are reachable from v, all vertices in $C \cup C'$ will be finished before v is finished and so $v \in C$ has the largest finish time
Strongly Connected Components: Correctness

- Remember that in a DAG, if \((u,v) \in E\)
 - \(\text{finish}[u] > \text{finish}[v]\)

\[
\text{finish}[u] > \text{finish}[v]
\]

\[
d[u] < d[v] < f[v] < f[u]
\]
Strongly Connected Components: Correctness

- **Corollary.** Let C and C’ be distinct SCC in directed graph G=(V, E). Suppose that there is an edge \((v, u) \in E^T\), where \(u \in C\) and \(v \in C’\). Then \(f(C) > f(C’)\) where finish times are generated by running DFS on G=(V, E).

![Diagram showing SCCs and edge]

- This means if we choose a SCC component C with largest finish time, there would be no edge from C to any other SCC.
Strongly Connected Components: Correctness

- Consider the component graph where all edges are reversed.
- The SCC with the largest finish time has no edges going out.
- So by running DFS there, we’ll get exactly that component.
- Then we repeat the process on other components.
Strongly Connected Components: Algorithm

- Reverse the edges of component graph
- Repeat
 - The SCC with the largest finish time has no edges going out
 - Only that connected component is reachable by second DFS
 - So by running DFS there, we'll get exactly that component
 - Then we delete that component and repeat the process on other components