Recall Exploring a graph

Visit all nodes or all nodes reachable from some “source”. Further: find shortest paths, connected components, . . .

Breadth-First/Depth-First Search

Breadth First Search — a cautious search where we check all vertices one edge away from the start node, then two edges away, etc.
Depth First Search — a bold search where we go as far as possible until there’s nothing new to explore, and then back up to find something new.

Adjacency lists

1: 2, 3, 4
2: 5, 7, 4, 3, 1
3: 1, 4, 2
4: 3, 1, 2
5: 2, 6, 7
6: 5
7: 5, 2

Note: these orders depend on the ordering of the adjacency lists.

Use a stack to store vertices that have been discovered but not yet explored.
Depth First Search as a recursive routine (the stack is implicit)

\[
\text{DFS}(v) \\
\text{mark}(v) := \text{discovered} \\
\text{for each vertex } u \text{ in Adjacency}(v) \\
\quad \text{if } u \text{ is undiscovered then} \\
\quad \text{DFS}(u)
\]

\[
\text{DFS} \quad \# \text{ to handle disconnected graphs} \\
\text{initialize: mark every vertex undiscovered} \\
\text{for each vertex } v \\
\quad \text{if } v \text{ is undiscovered then } \# \text{ start a new tree rooted at } v \\
\quad \text{DFS}(v)
\]

As with BFS, we should store more information as we do the search. Store parent pointers, distinguish \textbf{tree} edges and \textbf{non-tree} edges, store component numbers.
Depth First Search as a recursive routine (the stack is implicit)

\[
\text{DFS}(v)
\begin{align*}
\text{mark}(v) & := \text{discovered} \\
\text{for each vertex } u \text{ in } \text{Adjacency}(v) & \\
\text{if } u \text{ is undiscovered} & \\
\text{parent}(u) & := v; \ (v,u) \text{ is a tree edge;} \\
\text{DFS}(u) & \\
\text{else if } u \neq \text{parent}(v) & \text{then } (v,u) \text{ is a non-tree edge} \\
\text{mark}(v) & := \text{finished}
\end{align*}
\]

\[
\text{DFS} \quad \# \text{ to handle disconnected graphs}
\begin{align*}
\text{initialize}: \text{mark every vertex undiscovered} \\
\text{for each vertex } v & \\
\text{if } v \text{ is undiscovered} & \quad \# \text{ start a new tree rooted at } v \\
\text{DFS}(v) & \\
\end{align*}
\]

Runtime: \(O(n + m)\) — same analysis as for BFS

Exercise: Enhance this to number the connected components and record the component number of each vertex.
Properties of DFS

DFS gives rich structure:
- partition into one tree for each connected component
- edge classification (tree and non-tree edges)
- vertex orderings: order of discovery, order of “finishing” (more on this later)

Lemma. DFS(v_0) reaches all vertices connected to v_0.

Proof. Suppose there is a path v_0, v_1, \ldots, v_f
Look at the last vertex of this path that is discovered, say v_i.
Then we explore (and discover) all neighbours of v_i including v_{i+1}.
(This can be made more formal by induction.)

Lemma. Any non-tree edge joins an ancestor and a descendant.

Definition. v is an **ancestor** of u (and u is a **descendant** of v)
if we can follow parent pointers from u to reach v
Lemma. Any non-tree edge joins an ancestor and a descendant.

Proof. We cannot have an edge like \((a, b)\).
Enhancing DFS to compute discover and finish times

\[d(v) = \text{discover time} \quad f(v) = \text{finish time} \]

```
initialize time := 1
DFS(v)
mark(v) := discovered
 d(v) := time; time := time + 1
for each vertex u in Adjacency(v)
  if u is undiscovered then
    DFS(u)
  f(v) := time; time := time + 1
```

For multiple connected components, we should initialize time := 1 only at the very beginning.

Discover and finish times form a parenthesis system

If \(d(v) < d(u) \) then

\[
\begin{bmatrix}
 d(v) & d(u) & f(u) & f(v)
\end{bmatrix}
\quad \text{OR} \quad
\begin{bmatrix}
 d(v) & f(u) & d(u) & f(u)
\end{bmatrix}
\]

because the interval \(d(v), f(v) \) is the time when \(v \) is on the stack
Summary of Lecture 13, part 1

- Depth First Search, discover and finish times

What you should know from Lecture 13, part 1:

- how to do DFS

- property of non-tree edges

Next:

- Applications of Depth First Search
Applications of DFS (for undirected graphs)

Finding 2-connected ("biconnected") components

This graph is connected but removing one vertex (2 or 5) disconnects it

Vertex v is a cut vertex if removing v (and its incident edges) makes the graph disconnected.
Cut vertices are bad in networks.

Biconnected components
These are the “pieces” you get by separating at the cut vertices.
Finding 2-connected ("biconnected") components

linear time $O(n+m)$ algorithm using DFS
due to Hopcroft and Tarjan 1973

photos from the 70s
Finding 2-connected (“biconnected”) components.

First find cut vertices.
Characterizing cut vertices in terms of the DFS tree

Claim. The root is a cut vertex iff it has >1 child

Lemma. A non-root vertex v is a cut vertex iff v has a subtree T with no non-tree edge going from the subtree to an ancestor of v.
Finding cut vertices.

Making the lemma into a fast algorithm to find cut vertices

Define \(\text{low}(u) = \min \{d(w): \text{there is an edge } (u,w) \text{ or } u \text{ has a descendant } x \text{ and there is an edge } (x,w) \} \)

interpretation: \(\text{low}(u) \) = how high in the tree can we get to from \(u \) by going down (0 or more) and then up 1 edge.

The lemma rephrased: a non-root vertex \(v \) is a cut vertex iff \(v \) has a child \(u \) with \(\text{low}(u) \geq d(v) \)

Example
Finding cut vertices.

Define \(\text{low}(u) = \min \{ d(w): \text{there is an edge } (u,w) \text{ or } u \text{ has a descendant } x \text{ and there is an edge } (x,w) \} \)

interpretation: \(\text{low}(u) = \) how high in the tree can we get to from \(u \) by going down (0 or more) and then up 1 edge.

Computing low recursively:

\[
\text{low}(u) = \min \left\{ \min \{d(w) : (u,w) \text{ in } E\} \right. \\
\left. \min \{\text{low}(x): x \text{ a child of } u \} \right\}
\]

Order of computation: do children of \(u \) before \(u \). So order by finish time. i.e., When we finish a vertex \(u \) in DFS, use the recursive formula to compute \(\text{low}(u) \)

Advanced Exercise. Enhance DFS to compute \(\text{low} \). \(O(n+m) \)

Finding cut vertices:

After computing \(\text{low} \), run this test:

- If root has >1 child then root is a cut vertex
- For every vertex \(v \neq \text{root} \)
 - if \(v \) has a child \(u \) with \(\text{low}(u) \geq d(v) \) then \(v \) is a cut vertex

runtime: \(O(n+m) \)
Finding 2-connected (“biconnected”) components.

So far, we found the cut vertices.

Advanced Exercise. Find the 2-connected components. $O(n+m)$
Summary of Lecture 13

- Depth First Search, discover and finish times
- DFS to find cut vertices

What you should know from Lecture 13:

- how to do DFS
- property of non-tree edges
- what are cut vertices, 2-connected components
- appreciate the application of DFS to finding cut vertices

Next:

- Depth First Search for directed graphs