Minimum Spanning Tree Problem: Given a graph $G = (V,E)$ with edge weights $w: E \to \mathbb{R}_{\geq 0}$ find a minimum weight subset of the edges that connects all the vertices.

The weight of a set $F \subseteq E$ is $\sum \{w(e) : e \in F\}$

Examples

Assuming the graph is connected, the edge subset will be a tree, called the minimum spanning tree.

There are several possible greedy approaches, with different implementation challenges:
- add minimum weight edge first, never build a cycle. Kruskal’s algorithm
- grow a connected graph from one vertex. Prim’s algorithm. **TODAY**
- throw away heavy edges, never disconnect.
Prim’s MST algorithm: Grow one connected component in a greedy fashion, i.e. by adding the minimum weight edge leaving the component.

Correctness. The exact same exchange argument works. In fact, we can prove one lemma that gives correctness of both algorithms (see the text, CLRS).
Implementing and analyzing Prim’s algorithm \(|V| = n, |E| = m \)

Prim’s algorithm

initialize \(C := \{s\}; \ T := \emptyset \)
while \(C \neq V \)
 find the min weight edge \(e = (u,v) \) with \(u \in C, v \in V - C \)
 \(T := T \cup \{ e \} \)
 \(C := C \cup \{ v \} \)

In general, we need to find the min weight edge leaving \(C \).

Priority Queue. Data structure to maintain a set of weighted elements with the operations:

- Find and delete the min. weight element
- Insert
- Delete

Can be implemented as a heap (see CS 240) with \(O(\log k) \) time per operation, \(k = \#\text{elements} \).

In our case, the current set of elements is \(\delta(C) = \text{edges leaving } C \). Then \(k \leq m \).

We must:

- find the min weight edge \(e \in \delta(C) \). This is Find-min.
- update \(\delta(C) \) when \(v \) is added to \(C \)
Implementing and analyzing Prim’s algorithm

$|V| = n$, $|E| = m$

How to update $\delta(C)$ when v is added to C
- edges between C and v leave $\delta(C)$. Use Delete operations
- the other edges incident to v join $\delta(C)$. Use Insert operations.

We can find these edges by going through v’s adjacency list.

Note: each edge enters $\delta(C)$ once and leaves $\delta(C)$ once.

<table>
<thead>
<tr>
<th># of Priority Queue operations:</th>
<th>Total runtime:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find-min</td>
<td>$O(n \log m) + O(m \log m)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(m \log n)$ assuming $m \leq n$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\log m)$</td>
</tr>
</tbody>
</table>

Time per operation: $O(\log m)$

It is slightly more efficient to keep a priority Queue of vertices $V - C$, with $w(v) = \min$ weight of edge from C to v. Then size of Queue $= k \leq n$.

Update is a Decrease-Key operation, $O(\log n)$. Still gives $O(m \log n)$ total.

A Fibonacci Heap (fancy Priority Queue) gives $O(n \log n + m)$.
Summary of Lecture 16, part 1

- Prim’s algorithm for Minimum Spanning Tree

What you should know from Lecture 16, part 1:

- what is Prim’s algorithm, how to implement, runtime

Next:

- Shortest paths
Shortest Paths in Edge Weighted Graphs

Recall that BFS from vertex v finds shortest paths from v to all vertices in an unweighted undirected graph.

General input: directed or undirected graph with weights on the edges.

Example

Note 1: Does a Minimum Spanning Tree always contain the shortest paths? No always

Note 2: Can we reduce to unweighted graphs and use BFS?

We will study several shortest path algorithms (directed/undirected, single source/all pairs). Non-negative/arbitrary edge weights.

Today: Dijkstra’s algorithm.
Dijkstra’s Shortest Path Algorithm, 1959.

Input: Graph or digraph $G = (V,E)$ with edge weights $w: E \rightarrow \mathbb{R}^{\geq 0}$ and a vertex s.

Output: Shortest paths from s to every vertex in V.

Note: A **shortest** path is a path of minimum weight and the **weight** of a path $P \subseteq E$ is $\sum \{w(e) : e \in P\}$.

How do we give the output? as a **tree** of shortest paths.

Idea of the algorithm: Grow the tree of shortest paths starting from vertex s.
Dijkstra’s Shortest Path Algorithm, 1959.

Idea of the algorithm: Grow the tree of shortest paths starting from vertex s.

General step: have the tree T of shortest paths to all vertices in set B. Initially B = {s}.
Choose edge e = (x,y) with x ∈ B, y ∉ B to minimize
\[d(s,x) + w(x,y). \]
Call this d.

Then: \[d(s,y) := d \]
add (x,y) to T, i.e. parent(y) := x
add y to B

This is greedy in the sense that we always add the vertex with the next min distance from s.

Claim: d is the min distance from s to y.
Dijkstra’s Shortest Path Algorithm, 1959.

Claim. d is the min distance from s to y. (Assuming d(s,x) is correct for all x in B.)
Note: This justifies the output being a tree.

Proof. Any path from s to y has weight \(\geq d \).

Consider any paths to y. Break up it into

\[\Pi \]

- initial part in B
 \[s \to u \]
- first edge of it leaving B
 \[e = (u, v) \]
- rest of it
 \[\Pi_2 \]

\[w(\Pi) = w(\Pi_1) + w(e) + w(\Pi_2) \]
\[\geq w(\Pi_1) + w(e) \] because edge weight are \(\geq 0 \) so \(w(\Pi_2) \geq 0 \)
\[\geq d(s, u) + w(e) \geq d \] because \(d \) was chosen as min.

Therefore, by induction on I(B) the algorithm correctly finds d(s,v) for all vertices v.
A shortest path from s to v is recovered by following parent pointers from v.
Implementing and analyzing Dijkstra’s algorithm

Recall the plan:
Choose edge \(e = (x,y) \) with \(x \in B, \ y \notin B \) to minimize
\[d(s,x) + w(x,y). \]

As for Prim’s algorithm, we can use a Priority Queue (a heap) whose elements are edges \(e = (x,y) \) with \(x \in B, \ y \notin B \) with value(e) = \(d(s,x) + w(x,y) \).

More efficient: a heap of vertices \(y \notin B \), where value of \(y \) is the “tentative distance” \(d(y) = \min \text{ weight path from } s \text{ to } y \) with all but the last edge in \(B \).

Dijkstra’s algorithm

initialize: \(d(v) := \infty \ \forall \ v; \ d(s) := 0; \ B := \emptyset; \) set up heap on \(V \)
while \(B \neq V \)

\[y := \text{vertex of } V - B \text{ of min } d(y) \]

#Find-min (and delete it)

for each edge (y,z) do

\[\text{if } d(y) + w(y,z) < d(z) \text{ then} \]

\[d(z) := d(y) + w(y,z) \text{ and update the heap} \]

parent(z) := y

\[\text{add } y \text{ to } B. \]
Implementing and analyzing Dijkstra’s algorithm

Runtime Analysis

Dijkstra’s algorithm

\[
\text{initialize: } \ d(v) := \infty \ \forall \ v; \ d(s) := 0; \ B := \emptyset; \ \text{set up heap on } V \\
\text{while } B \neq V \\
\quad y := \text{vertex of } V - B \text{ of min } d(y) \quad \# \text{Find-min (and delete it)} \\
\quad \text{for each edge } (y,z) \text{ do} \\
\quad \quad \text{if } d(y) + w(y,z) < d(z) \text{ then} \\
\quad \quad \quad d(z) := d(y) + w(y,z) \text{ and update the heap} \\
\quad \quad \text{parent}(z) := y
\]

Heap has \(O(n)\) elements. Find-min, Insert, Delete take \(O(\log n)\) time.

How to update the heap: The value (key) of \(z\) changes. Can Delete and re-Insert \(z\). Or use Decrease-Key operation. Either way, \(O(\log n)\).

of Priority Queue operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>(n)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total runtime:

\[
\mathcal{O}(n \log n) + \mathcal{O}(m \log n) = \mathcal{O}(m \log n) \text{ assuming } m \geq n.
\]
Edsger W. Dijkstra was known for many contributions to computer science, e.g. structured programming, concurrent programming. He designed the above shortest path algorithm to demonstrate the capabilities of a new computer (he found railway journeys in the Netherlands as the demonstration).

At that time (the 1950’s) the result was not considered important.

Dijkstra wrote:

At the time, algorithms were hardly considered a scientific topic. I wouldn’t have known where to publish it. . . . The mathematical culture of the day was very much identified with the continuum and infinity. Could a finite discrete problem be of any interest? The number of paths from here to there on a finite graph is finite; each path is a finite length; you must search for the minimum of a finite set. Any finite set has a minimum – next problem, please. It was not considered mathematically respectable. . .
Summary of Lecture 16

- Prim’s MST algorithm
- Dijkstra’s shortest path algorithm

What you should know from Lecture 16:

- what is Prim’s Min Spanning Tree algorithm, implementation, runtime
- what is Dijkstra’s algorithm, implementation, runtime
- conditions for Dijkstra to work
- similarities and differences Prim vs Dijkstra

Next:

- more algorithms for shortest paths in graphs