Summary of the course so far:

I. Algorithmic Paradigms
 - reductions
 - divide and conquer
 - greedy algorithms
 - dynamic programming

II. Graph Algorithms

You have seen many *efficient* algorithms = run time is polynomial in input size, e.g., $O(n)$, $O(n \log n)$, $O(n^3)$, etc.

But there are many practical problems where no efficient algorithm is known e.g., 0-1 knapsack, Travelling Salesman, shortest path in a graph with negative weights

Options for these “hard” problems:

- heuristics — run quickly but no guarantee on run time or quality of solution
- approximation algorithms — guarantee quality of solution
- exact solutions that take exponential time — today’s topic

We sometimes need exact solutions, e.g., to test the quality of heuristics
Backtracking

- a systematic way to try all possible solutions
- like searching in an implicit graph of partial solutions
- used for decision problems (we’ll deal with optimization problems later)

Example. Subset Sum (a decision version of Knapsack with value = weight)
Given elements 1, 2, . . . n, with weights $w_1, w_2, \ldots w_n$ and target weight W, is there a subset $S \subseteq \{1, 2, \ldots n\}$ such that $\sum_{i \in S} w_i = W$

example
weights = \{2, 2, 3, 5, 7\}, \quad W = 13
Is there a solution? \quad \mathbf{NO}.

Fact. This problem is NP-complete (proof later). No one knows a polynomial time algorithm.

The best we can do is explore all subsets.

How many subsets are there? 2^n
Backtracking to explore all subsets of \{1, 2, \ldots, n\}

Each node corresponds to a configuration

\[C = (S, R) \] where \(S \subseteq \{1, 2, \ldots, i-1\}, R = \{i, \ldots, n\} \)

and has two children — put \(i \) in or \(\text{out} \) of \(S \).

Next: how to explore a backtracking tree in general.
General Backtracking Algorithm

A = set of active configurations. Initially A has just one configuration.

while A ≠ ∅

C := remove a configuration from A

explore configuration C
if C solves the problem then DONE
if C is a dead-end then discard it
else expand C to child configurations C₁, . . . , Cₜ by making additional choices,
 and add each Cᵢ to A
end

e.g., for subsets of {1, 2, . . . n} the initial configuration is S = ∅, R = {1, . . . , n}.

Options:
- store A as a stack. DFS of configuration space. Size of A = height of tree.
- store A as a queue. BFS of configuration space. Size of A = width of tree.

To reduce space, store A as a stack.
e.g., for Subset Sum, width is 2ⁿ, height is n.

Note: we might also explore the “most promising” configuration first. Then store A as a priority queue.
Applying the Backtracking Algorithm to Subset Sum

while $A \neq \emptyset$
 C := remove a configuration from A
 # explore configuration C
 if C solves the problem then DONE
 if C is a dead-end then discard it
 else expand C to child configurations C_1, \ldots, C_t by making additional choices, and add each C_i to A
end

How to explore configuration $C = (S,R)$ for Subset Sum
(recall $S =$ set so far, $R =$ remaining elements)

Keep: $w = \sum_{i \in S} w_i$, $r = \sum_{i \in R} w_i$

Then: - if $w = W$ — SUCCESS (solved problem)
 - if $w > W$ — dead end (don’t expand this configuration)
 - if $r+w < W$ — dead end

Run time: $O(2^n)$

There is also a dynamic programming algorithm for Subset Sum (like for knapsack) with runtime $O(nW)$. Which is better? It depends! If W is small, $O(nW)$ is better. If W has n bits then backtracking is better.
Backtracking to explore all permutations of \(\{1, 2, \ldots, n\} \)

configuration \(C = (P, R) \), \(P = \) permutation so far
\(R = \) remaining elements (not drawn above)

There are \(n! \) leaves.
Summary of Lecture 17, Part 1

- backtracking to try all possibilities

- examples: explore all subsets (Subset Sum), explore all permutations

What you should know from Lecture 17, Part 1:

- how backtracking works

Next:

- branch-and-bound for optimization problems
Optimization versus Decision problems

Sometimes we want a solution and sometimes we want the best solution according to some objective function.

Example 1. Subset Sum versus 0-1 Knapsack.

Example 2. Hamiltonian cycle versus Travelling Salesman Problem (TSP).

Hamiltonian cycle: Given a graph, find a Hamiltonian cycle — a cycle that goes through every vertex exactly once.

Travelling Salesman: Given a graph with weights on the edges, find a Hamiltonian cycle such that the sum of its edge weights is minimum.

To solve Hamiltonian cycle, we could use backtracking to try all n! vertex orderings.

Exercise: go through the problems we’ve covered in the course — which were decision problems? optimization problems? neither? (e.g. sorting)
Branch and Bound

- exhaustive search for optimization problems.
- rather than DFS order, explore the “most promising” configuration first
- keep the best (minimum/maximum) found so far
- “branch” — generate children
- “bound” — compute a lower bound on the objective function for a configuration
 (= the best we might get from this configuration) and discard the configuration if
 its lower bound is greater than best so far

General Branch and Bound Algorithm

A = set of active configurations. Initially A has just one configuration.
best-cost := ∞
while A ≠ ∅
 C := remove “most promising” configuration from A
 expand C to C₁, . . . , Cₜ by making additional choices
 for i = 1 . . t
 if Cᵢ solves the problem then if cost(Cᵢ) < best-cost then update best-cost
 else if Cᵢ is a dead-end then discard it
 else if lower-bound(Cᵢ) < best-cost then add Cᵢ to A
 end
end
Branch-and-Bound for the Travelling Salesman Problem

- based on enumerating all subsets of edges (not all vertex orderings!)
- configuration $C = (N, X)$, where $N \subseteq E$ is the iNcluded edges,
 and $X \subseteq E$ is the eXcluded edges (with $N \cap X = \emptyset$).

Example.

```
\begin{tabular}{c c c c}
  a & b \\
  \hline
  c & d \\
\end{tabular}
```

If $X = \{(a,b)\}$ then the only TSP tour is acbd

If $X = \{(a,b)\}$ and $N = \{(c,d)\}$ then there is no solution

Necessary conditions (used to detect dead ends)

- $E - X$ is connected (actually, biconnected)
- N has ≤ 2 edges incident to each vertex
- N contains no cycle (except on all the vertices)

How to branch:

$C = (N, X)$

choose some $e \in E - (N \cup X)$ to branch on

- e in
- e out

($N \cup \{e\}, X$)

($N, X \cup \{e\}$)
Branch-and-Bound for the Travelling Salesman Problem

How to bound: Given a configuration \((N, X)\) we want to **efficiently compute** a lower bound on the min cost TSP that includes \(N\) and excludes \(X\).

A relaxed (easier) problem:

Definition. A **1-tree** is a spanning tree on vertices \(2, 3, \ldots n\) plus two edges incident to vertex 1.

![Example 1-trees](example.png)

Claim. Any TSP tour is a 1-tree. Thus min weight of TSP \(\geq\) min weight of 1-tree. So this gives our lower bound.

Given configuration \((N, X)\) we can efficiently compute the minimum weight 1-tree that includes \(N\) and excludes \(X\):

- discard edges \(X\)
- assign (temporarily) weight 0 to edges in \(N\)
- find a Min Spanning Tree on vertices \(2, 3, \ldots n\)
- add the two min. weight edges incident to vertex 1
- then compute weight of 1-tree (add up weights of edges in 1-tree)
Branch-and-Bound for the Travelling Salesman Problem

Plugging this into the general branch and bound algorithm:

\[A = \text{set of active configurations. Initially } A \text{ has just one configuration, } C = (\emptyset, \emptyset) \]
\[\text{min-weight := } \infty \]
while \(A \neq \emptyset \)

\[C = (N, X) := \text{remove “most promising” configuration from } A \]
\[\text{choose } e \in E - (N \cup X) \]
\[\text{expand } C \text{ to } C_1, C_2 \text{ by choosing } e \text{ in or } e \text{ out} \]
for \(i = 1, 2 \)

\[\text{if } C_i \text{ solves the problem then if weight}(C_i) < \text{min-weight} \text{ then update min-weight} \]
\[\text{else if } C_i \text{ is a dead-end then discard it} \]
\[\text{else if } \text{min-weight-1-tree}(C_i) < \text{min-weight} \text{ then add } C_i \text{ to } A \]
end

Enhancements:

- “most promising” = min weight 1-tree
- branch wisely by choosing e depending on the min weight 1-tree

These, plus further enhancements, lead to competitive TSP algorithms.

Don’t worry about the details of 1-trees — the point is to have some idea of the “bound” step of branch and bound
Summary of Lecture 17:
- backtracking to try all possibilities
- branch-and-bound for optimization problems

What you should know from Lecture 17:
- assignment/programming may ask you to do backtracking/branch-and-bound

Next:
- NP-completeness — the “hard” problems where we should resort to exhaustive search