Summary of the course so far:

I. Algorithmic Paradigms
 - reductions
 - divide and conquer
 - greedy algorithms
 - dynamic programming

II. Graph Algorithms

You have seen many efficient algorithms = run time is polynomial in input size, e.g., $O(n)$, $O(n \log n)$, $O(n^3)$, etc.

But there are many practical problems where no efficient algorithm is known e.g., 0-1 knapsack, Travelling Salesman, shortest path in a graph with negative weights

Options for these “hard” problems:

- heuristics — run quickly but no guarantee on run time or quality of solution
- approximation algorithms — guarantee quality of solution
- exact solutions that take exponential time — today’s topic

We sometimes need exact solutions, e.g., to test the quality of heuristics
Backtracking

- a systematic way to try all possible solutions
- like searching in an **implicit graph** of partial solutions
- used for **decision** problems (we’ll deal with optimization problems later)

Example. Subset Sum (a decision version of Knapsack with value = weight)
Given elements 1, 2, \ldots n, with weights \(w_1, w_2, \ldots w_n \) and target weight \(W \), is there a subset \(S \subseteq \{1, 2, \ldots n\} \) such that \(\sum_{i \in S} w_i = W \)

example
weights = \{2, 2, 3, 5, 7\}, \hspace{1cm} W = 13
Is there a solution?

Fact. This problem is NP-complete (proof later). No one knows a polynomial time algorithm.

The best we can do is explore all subsets.

How many subsets are there?
Backtracking to explore all subsets of \(\{1, 2, \ldots, n\} \)

Each node corresponds to a configuration

\[C = (S, R) \text{ where } S \subseteq \{1, 2, \ldots, i-1\}, \ R = \{i, \ldots, n\} \]

and has two children — put \(i \) in or out of \(S \).

Next: how to explore a backtracking tree in general.
General Backtracking Algorithm

A = set of active configurations. Initially A has just one configuration.

while A ≠ ∅
 C := remove a configuration from A
 # explore configuration C
 if C solves the problem then DONE
 if C is a dead-end then discard it
 else expand C to child configurations C₁, . . . , Cₜ by making additional choices,
 and add each Cᵢ to A
end

e.g., for subsets of {1, 2, . . . n} the initial configuration is S = ∅, R = {1, . . . , n}.

Options:
- store A as a stack. DFS of configuration space. Size of A = height of tree.
- store A as a queue. BFS of configuration space. Size of A = width of tree.

To reduce space, store A as a stack.
e.g., for Subset Sum, width is 2ⁿ, height is n.

Note: we might also explore the “most promising” configuration first. Then store A as a priority queue.
Applying the Backtracking Algorithm to Subset Sum

while $A \neq \emptyset$

 $C :=$ remove a configuration from A

 # explore configuration C

 if C solves the problem then DONE

 if C is a dead-end then discard it

 else expand C to child configurations C_1, \ldots, C_t by making additional choices,

 and add each C_i to A

end

How to explore configuration $C = (S,R)$ for Subset Sum
(recall $S =$ set so far, $R =$ remaining elements)

Keep: $w = \sum_{i \in S} w_i \quad r = \sum_{i \in R} w_i$

Then: - if $w = W$ — SUCCESS (solved problem)

 - if $w > W$ — dead end (don’t expand this configuration)

 - if $r+w < W$ — dead end

Run time: $O(2^n)$

There is also a dynamic programming algorithm for Subset Sum (like for knapsack) with runtime $O(nW)$. Which is better? It depends! If W is small, $O(nW)$ is better. If W has n bits then backtracking is better.
Backtracking to explore all permutations of \(\{1, 2, \ldots, n\}\)

configuration \(C = (P, R)\), \(P = \) permutation so far
\(R = \) remaining elements (not drawn above)

There are \(n!\) leaves.
Summary of Lecture 17, Part 1

- backtracking to try all possibilities

- examples: explore all subsets (Subset Sum), explore all permutations

What you should know from Lecture 17, Part 1:

- how backtracking works

Next:

- branch-and-bound for optimization problems
Optimization versus Decision problems

Sometimes we want a solution and sometimes we want the best solution according to some objective function.

Example 1. Subset Sum versus 0-1 Knapsack.

Example 2. Hamiltonian cycle versus Travelling Salesman Problem (TSP).

Hamiltonian cycle: Given a graph, find a Hamiltonian cycle — a cycle that goes through every vertex exactly once.

Travelling Salesman: Given a graph with weights on the edges, find a Hamiltonian cycle such that the sum of its edge weights is minimum.

To solve Hamiltonian cycle, we could use backtracking to try all n! vertex orderings.

Exercise: go through the problems we’ve covered in the course — which were decision problems? optimization problems? neither? (e.g. sorting)
Branch and Bound

- exhaustive search for **optimization** problems.
- rather than DFS order, explore the “most promising” configuration first
- keep the best (minimum/maximum) found so far
- “branch” — generate children
- “bound” — compute a lower bound on the objective function for a configuration (= the best we might get from this configuration) and discard the configuration if its lower bound is greater than best so far

General Branch and Bound Algorithm

\[
A = \text{set of active configurations. Initially } A \text{ has just one configuration.} \\
\text{best-cost} := \infty \\
\text{while } A \neq \emptyset \\
\quad C := \text{remove “most promising” configuration from } A \\
\quad \text{expand } C \text{ to } C_1, \ldots, C_t \text{ by making additional choices} \quad \text{BRANCH} \\
\quad \text{for } i = 1 \ldots t \\
\quad \quad \text{if } C_i \text{ solves the problem then if } \text{cost}(C_i) < \text{best-cost} \text{ then update best-cost} \\
\quad \quad \text{else if } C_i \text{ is a dead-end then discard it} \\
\quad \quad \text{else if lower-bound}(C_i) < \text{best-cost} \text{ then add } C_i \text{ to } A \quad \text{BOUND} \\
\text{end}
\]
Branch-and-Bound for the Travelling Salesman Problem

- based on enumerating all subsets of edges (not all vertex orderings!)
- configuration \(C = (N, X) \), where \(N \subseteq E \) is the included edges,
 and \(X \subseteq E \) is the excluded edges (with \(N \cap X = \emptyset \)).

Example.

- If \(X = \{(a,b)\} \) then the only TSP tour is acbd
- If \(X = \{(a,b)\} \) and \(N = \{(c,d)\} \) then there is no solution

Necessary conditions (used to detect dead ends)
- \(E - X \) is connected (actually, biconnected)
- \(N \) has \(\leq 2 \) edges incident to each vertex
- \(N \) contains no cycle (except on all the vertices)

How to branch:

- Choose some \(e \in E - (N \cup X) \) to branch on
 - \(e \) in: \((N \cup \{e\}, X) \)
 - \(e \) out: \((N, X \cup \{e\}) \)
Branch-and-Bound for the Travelling Salesman Problem

How to bound: Given a configuration \((N,X)\) we want to **efficiently compute** a lower bound on the min cost TSP that includes \(N\) and excludes \(X\).

A relaxed (easier) problem:

Definition. A **1-tree** is a spanning tree on vertices 2, 3, \ldots n plus two edges incident to vertex 1.

![Examples of 1-trees](image)

Claim. Any TSP tour is a 1-tree.
Thus min weight of TSP \(\geq\) min weight of 1-tree. So this gives our lower bound.

Given configuration \((N,X)\) we can efficiently compute the minimum weight 1-tree that includes \(N\) and excludes \(X\):
Branch-and-Bound for the Travelling Salesman Problem

Plugging this into the general branch and bound algorithm:

A = set of active configurations. Initially A has just one configuration, C = (∅, ∅)
min-weight := ∞
while A ≠ ∅
 C = (N, X) := remove “most promising” configuration from A
 choose e ∈ E - (N ∪ X)
 expand C to C_1, C_2 by choosing e in or e out
 for i = 1, 2
 if C_i solves the problem then if weight(C_i) < min-weight then update min-weight
 else if C_i is a dead-end then discard it
 else if min-weight-1-tree(C_i) < min-weight then add C_i to A
 end

Enhancements:
- “most promising” = min weight 1-tree
- branch wisely by choosing e depending on the min weight 1-tree

These, plus further enhancements, lead to competitive TSP algorithms.

Don’t worry about the details of 1-trees — the point is to have some idea of the “bound” step of branch and bound
Summary of Lecture 17:

- backtracking to try all possibilities
- branch-and-bound for optimization problems

What you should know from Lecture 17:

- assignment/programming may ask you to do backtracking/branch-and-bound

Next:

- NP-completeness — the “hard” problems where we should resort to exhaustive search