Recall

Summary of Lecture 18

We will study which problems (seemingly) cannot be solved in polynomial time.

\[P = \text{the class of decision problems that have polynomial time algorithms} \]

\[X \leq_P Y, \text{ for problems } X, Y, \text{ “}X \text{ reduces to } Y \text{ in polynomial time”}, \text{ means: we can use a polynomial time algorithm for } Y \text{ to make a polynomial time algorithm for } X. \]
A few decision problems in NP:

- Hamiltonian path/cycle
- Travelling Salesman Problem
- Independent Set

Common feature: if the answer is YES, then there is some succinct information (a certificate) to verify that the answer is YES.

Example: Independent Set. Given graph G, and number k, does G have an independent set of size $\geq k$?

How can I convince you that Yes, there is an independent set of size ≥ 5?

How can I convince you that No, there is no independent set of size ≥ 7?
A verification algorithm takes input + certificate and checks it. Formally:

Definition. Algorithm A is a verification algorithm for the decision problem X if

- A takes two inputs x, y and outputs YES or NO
- for every input x for problem X, x is a YES for X iff there exists a y (a certificate) such that $A(x,y)$ outputs YES

Furthermore, A is a polynomial time verification algorithm if

- A runs in polynomial time
- there is a polynomial bound on the size of the certificate y

We say X “can be verified in polynomial time” if there is a poly time verification algorithm for X.

Definition.

NP = the class of decision problems that can be verified in polynomial time

NP = Non-deterministic Polynomial time — because the certificate is like a non-deterministic guess
Examples

Subset Sum \in NP

Given numbers w_1, \ldots, w_n, W is there a subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i = W$

Certificate: the set S
Verification: check that $\sum_{i \in S} w_i = W$
This takes poly. time.

TSP (decision version) \in NP

Given a graph G, weights on edges, number k, does G have a TSP tour of length $\leq k$

Certificate: a permutation of the vertices
Verification: check it's a permutation, check edges exist to make a cycle, check sum of weights of edges in cycle is $\leq k$. This takes poly. time.
Examples that don’t seem to be in NP

Unique Subset Sum

Given numbers w_1, \ldots, w_n, W is there a unique subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i = W$

You can verify that a given S is a solution. But how can you verify that S is the only solution?

Steiner tree in the plane

Given points in the plane, can you connect them (using extra points) with a tree of Euclidean length $\leq k$

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.

Two difficulties:
- the coordinates of the extra points (are they rational?)
- checking sum of Euclidean lengths $\leq k$ is not known in poly. time because of $\sqrt{5}$.
Claim. $P \subseteq NP$, i.e. if X is in P then X is in NP.

Proof. The certificate is empty and the verification algorithm is just the poly time algorithm for X.

Definition.

\[\text{coNP} = \text{the class of decision problems where the NO instances can be verified in polynomial time}\]

Example. **Primes:** Given a number n, is it prime?

Primes \in coNP

To verify that n is NOT prime, the certificate is numbers $a, b \in \mathbb{N}$, $a, b \geq 2$ and verify $a \cdot b = n$

In fact, Primes $\in P$. A poly time algorithm was found in 2002.

OPEN QUESTIONS

1. $P = \? NP$
 worth 1 million (Millenium Prize)

2. $NP = \? coNP$

3. $P = \? NP \cap coNP$
OPEN QUESTIONS

1. P =? NP

2. NP =? coNP

3. P =? NP \cap coNP

Properties

1. P \subseteq NP, P \subseteq coNP

2. Any problem in NP can be solved in time \(O(2^n)\) by trying all certificates one by one
Summary of Lecture 19, Part 1

- classes \(\text{NP, coNP} \)

What you should know from Lecture 19, Part 1:

- how to prove that a problem is in \(\text{NP} \) (certificate, verification)

Next:

- \(\text{NP-complete} \) problems
Definition. A decision problem X is **NP-complete** if

- $X \in \text{NP}$
- for every Y in NP, $Y \leq_P X$

i.e. X is [one of] the hardest problem in NP.

Two important implications of X being NP-complete

- if X can be solved in polynomial time then so can every problem in NP
 (if $X \in \text{P}$ then $\text{P} = \text{NP}$)

- if X cannot be solved in polynomial time then no NP-complete problem can be solved in polynomial time

- if $X \in \text{co-NP}$ then $\text{NP} = \text{coNP}$ (this needs proof)
The first NP-completeness proof is difficult — must show that every problem \(Y \in \text{NP} \) reduces to \(X \).

Subsequent NP-completeness proofs are easier because \(\leq_p \) is transitive:

Claim. If \(Y \leq_p X \) and \(X \leq_p Z \) then \(Y \leq_p Z \).

So to prove \(Z \) is NP-complete, we just need to prove \(X \leq_p Z \) where \(X \) is a known NP-complete problem.
Summary: to prove a decision problem Z is NP-complete

1. prove Z in NP
2. prove $X \leq_P Z$ for some known NP-complete problem X.

Our first NP-complete problem: Circuit Satisfiability
[definition and proof later]

second NP-complete problem: Satisfiability
[proof later, but definition now]

Satisfiability (SAT)
Input: a Boolean formula made of Boolean variables, and logical operands \land "and", \lor "or", \neg "not"

e.g. $\neg (x_1 \land x_2) \lor (x_3 \land (x_5 \lor \neg x_4))$

Question: Is there an assignment of True/False to the variables to make the formula True?

 e.g. $x_1 = \text{False}$ and others arbitrary makes the above formula True

Exercise. Prove that Satisfiability is in NP.
SAT is NP-complete, even the special case of “CNF” — Conjunctive Normal Form

Definition of CNF

formula is \land of *clauses*; clause is \lor of *literals*; literal is x or $\neg x$

\[
(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4) \land (x_3 \lor x_4 \lor \neg x_5)
\]

clause \uparrow \uparrow

literals

In fact, SAT is still NP-complete when all clauses have 3 literals — this is called 3-SAT

3-SAT

Input: A Boolean formula that is an \land of clauses, each clause an \lor of 3 literals, each literal a variable or negation of a variable.

Question: Is there an assignment of True/False to the variables to make the formula True?

Theorem. 3-SAT is NP-complete [proof later]

but 2-SAT is in P

There is a linear time algorithm for 2-SAT that uses strong connectivity of a directed graph.

Summary of Lecture 19, Part 2

definition of NP-complete, the first NP-complete problems: SAT, 3-SAT

What you should know from Lecture 19, Part 2:

- what are the two steps to proving a problem is NP-complete

Next:

- examples of NP-completeness proofs
Independent Set
Input: Graph $G = (V,E)$, number k.
Question: Does G have an independent set of size $\geq k$?

Theorem. Independent Set is NP-complete.

Proof.

1. Independent Set is in NP — we already saw the idea of this in Part 1.
2. $3\text{-SAT} \leq_P$ Independent Set
Independent Set

Input: Graph G = (V,E), number k.
Question: Does G have an independent set of size ≥ k?

Theorem. Independent Set is NP-complete.

Proof.

1. Independent Set is in NP — we already saw the idea of this in Part 1.
2. 3-SAT ≤ₚ Independent Set

Suppose we have a polynomial time algorithm for Independent Set.
Give a polynomial time algorithm for 3-SAT.

Input: A 3-SAT formula F with clauses C₁ . . . Cₘ on variables x₁ . . . xₙ
Output: Is F satisfiable?

Idea: - construct a graph G and choose a number k such that
 \[G \text{ has an independent set of size } \geq k \text{ iff } F \text{ is satisfiable} \]
 - run the Independent Set algorithm on G, k
 - return its answer

This is a many-one ("one-shot") reduction. To prove correctness, just prove ★
To prove poly time, just prove that G can be constructed in poly time (in size of F).
Proof. continued

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Output: Is F satisfiable?

Idea: - construct a graph G and choose a number k such that
 - G has an independent set of size $\geq k$ iff F is satisfiable
- run the Independent Set algorithm on G, k
- return its answer
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Output: Is F satisfiable?

Idea:
- construct a graph G and choose a number k such that G has an independent set of size $\geq k$ iff F is satisfiable
- run the Independent Set algorithm on G, k
- return its answer

Construction:
- For each clause C_i with literals l_1, l_2, l_3, make 3 vertices joined by 3 edges
- if two literals are opposite, join them with an edge.
- $k := m$

Runtime: Prove that G can be constructed in poly time (in the size of F). G has $3m$ vertices and can be constructed in time polynomial in m and n

Correctness: prove G has an independent set of size $\geq k$ iff F is satisfiable
- if F is satisfiable then each clause has (at least) one True literal. Choose the corresponding m vertices of G. They are independent.
- if G has an independent set of size $\geq m$ there must be one in each triangle. Set the corresponding literals True. This is valid, and satisfies F.

This completes the proof that Independent Set is NP-complete.
Definition. Problem X reduces to problem Y, written $X \leq Y$, if an algorithm for Y can be used to make an algorithm for X.

Definition. A many one reduction $X \leq Y$ uses the algorithm for Y once and outputs its answer.

mnemonic: many-one = “one-shot”

“many-one” is a standard name; one-shot is not

The form of a polynomial time many-one reduction $X \leq_P Y$:

Assume we have an algorithm A for Y

Algorithm for X:
- take input x and construct an input y for problem Y
- run A on y
- return the answer

For correctness we just need to prove:

the answer for x is YES iff the answer for y is YES

For poly time we just need to prove:

the construction of y takes polynomial time.
How to prove that a decision problem Z is NP-complete

1. prove Z in NP
2. prove $X \leq_P Z$ for some known NP-complete problem X.

 Use a *many-one* reduction.
Summary of Lecture 19

- definition of NP-complete, first NP-completeness proofs

What you should know from Lecture 19 (and Lecture 20)

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

- more examples of NP-completeness proofs