Recall

Summary of Lecture 18

We will study which problems (seemingly) cannot be solved in polynomial time.

\[P = \text{the class of decision problems that have polynomial time algorithms} \]

\[X \leq_P Y, \text{ for problems } X, Y, \text{ “}X \text{ reduces to } Y \text{ in polynomial time”}, \text{ means: we can use a polynomial time algorithm for } Y \text{ to make a polynomial time algorithm for } X. \]
The class NP

A few decision problems in NP:

- Hamiltonian path/cycle
- Travelling Salesman Problem
- Independent Set

Common feature: if the answer is YES, then there is some succinct information (a certificate) to verify that the answer is YES.

Example: Independent Set. Given graph G, and number k, does G have an independent set of size $\geq k$?

How can I convince you that Yes, there is an independent set of size ≥ 5?

How can I convince you that No, there is no independent set of size ≥ 7?
A *verification algorithm* takes input + certificate and checks it. Formally:

Definition. Algorithm A is a *verification algorithm* for the decision problem X if

- A takes two inputs \(x, y \) and outputs YES or NO
- for every input \(x \) for problem X, \(x \) is a YES for X iff there exists a \(y \) (a *certificate*) such that \(A(x,y) \) outputs YES

Furthermore, A is a *polynomial time verification algorithm* if

- A runs in polynomial time
- there is a polynomial bound on the size of the certificate \(y \)

We say X “can be verified in polynomial time” if there is a poly time verification algorithm for X.

Definition.

\[\text{NP} = \text{the class of decision problems that can be verified in polynomial time} \]

\[\text{NP} = \text{Non-deterministic Polynomial time} \quad \text{— because the certificate is like a non-deterministic guess} \]

CS 360 covers non-deterministic Turing machines
Examples

Subset Sum ∈ NP

Given numbers \(w_1, \ldots, w_n, W \) is there a subset \(S \subseteq \{1, \ldots, n\} \)
such that \(\sum_{i \in S} w_i = W \)

TSP (decision version) ∈ NP

Given a graph \(G \), weights on edges, number \(k \), does \(G \) have a TSP tour of length \(\leq k \)
Examples that don’t seem to be in NP

Unique Subset Sum

Given numbers \(w_1, \ldots, w_n, W \) is there a unique subset \(S \subseteq \{1, \ldots, n\} \) such that \(\sum_{i \in S} w_i = W \)

Steiner tree in the plane

Given points in the plane, can you connect them (using extra points) with a tree of Euclidean length \(\leq k \)
Definition. \(\text{coNP} = \) the class of decision problems where the NO instances can be verified in polynomial time

Example. **Primes**: Given a number \(n \), is it prime?

Primes \(\in \) coNP

In fact, Primes \(\in \) P. A poly time algorithm was found in 2002. https://en.wikipedia.org/wiki/AKS_primality_test
OPEN QUESTIONS

1. $P =? NP$
 worth 1 million (Millenium Prize)
 \[\text{Wikipedia: P versus NP problem}\]

2. $NP =? \text{coNP}$

3. $P =? NP \cap \text{coNP}$
OPEN QUESTIONS

1. $P = ? NP$
 worth 1 million (Millenium Prize)
 \[\text{https://en.wikipedia.org/wiki/P_versus_NP_problem} \]

2. $NP = ? coNP$

3. $P = ? NP \cap coNP$

Properties

1. $P \subseteq NP, \ P \subseteq coNP$

2. Any problem in NP can be solved in time $O(2^n)$ by trying all certificates one by one
Summary of Lecture 19, Part 1

classes NP, coNP

What you should know from Lecture 19, Part 1:

- how to prove that a problem is in NP (certificate, verification)

Next:

- NP-complete problems
A decision problem X is \textbf{NP-complete} if

- $X \in \text{NP}$
- for every Y in NP, $Y \leq_P X$

i.e. X is [one of] the hardest problem in NP.

Two important implications of X being NP-complete

- if X can be solved in polynomial time then so can every problem in NP (if $X \in \text{P}$ then $\text{P} = \text{NP}$)
- if X cannot be solved in polynomial time then no NP-complete problem can be solved in polynomial time
- if $X \in \text{co-NP}$ then $\text{NP} = \text{coNP}$ (this needs proof)
The first NP-completeness proof is difficult — must show that every problem $Y \in NP$ reduces to X

Subsequent NP-completeness proofs are easier because \leq_P is transitive:

Claim. If $Y \leq_P X$ and $X \leq_P Z$ then $Y \leq_P Z$

So to prove Z is NP-complete, we just need to prove $X \leq_P Z$ where X is a known NP-complete problem.
Summary: to prove a decision problem Z is NP-complete

1. prove Z in NP
2. prove $X \leq_P Z$ for some known NP-complete problem X.

Our first NP-complete problem: Circuit Satisfiability
[definition and proof later]

second NP-complete problem: Satisfiability
[proof later, but definition now]

Satisfiability (SAT)
Input: a Boolean formula made of Boolean variables, and logical operands \land “and”, \lor “or”, \neg “not”

e.g.

Question: Is there an assignment of True/False to the variables to make the formula True?

Exercise. Prove that Satisfiability is in NP.
SAT is NP-complete, even the special case of “CNF” — Conjunctive Normal Form

Definition of CNF

A formula is a conjunction of clauses; a clause is a disjunction of literals; a literal is a variable or its negation.

\[(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4) \land (x_3 \lor x_4 \lor \neg x_5)\]

In fact, SAT is still NP-complete when all clauses have 3 literals — this is called 3-SAT

3-SAT

Input: A Boolean formula that is an conjunction of clauses, each clause a disjunction of 3 literals, each literal a variable or negation of a variable.

Question: Is there an assignment of True/False to the variables to make the formula True?

Theorem. 3-SAT is NP-complete [proof later]

but 2-SAT is in P

There is a linear time algorithm for 2-SAT that uses strong connectivity of a directed graph.

Summary of Lecture 19, Part 2

definition of NP-complete, the first NP-complete problems: SAT, 3-SAT

What you should know from Lecture 19, Part 2:

- what are the two steps to proving a problem is NP-complete

Next:

- examples of NP-completeness proofs
Independent Set
Input: Graph $G = (V,E)$, number k.
Question: Does G have an independent set of size $\geq k$?

Theorem. Independent Set is NP-complete.
Proof.

1. Independent Set is in NP — we already saw the idea of this in Part 1.
2. \leq_P Independent Set
Independent Set
Input: Graph G = (V,E), number k.
Question: Does G have an independent set of size \(\geq k \)?

Theorem. Independent Set is NP-complete.
Proof.
1. Independent Set is in NP — we already saw the idea of this in Part 1.
2. 3-SAT \(\leq_p \) Independent Set

Suppose we have a polynomial time algorithm for Independent Set. Give a polynomial time algorithm for 3-SAT.

Input: A 3-SAT formula F with clauses \(C_1 \ldots C_m \) on variables \(x_1 \ldots x_n \)
Output: Is F satisfiable?

Idea: - construct a graph G and choose a number k such that
 \(G \) has an independent set of size \(\geq k \) iff F is satisfiable ★
- run the Independent Set algorithm on G, k
- return its answer

This is a many-one (“one-shot”) reduction. To prove correctness, just prove ★
To prove poly time, just prove that G can be constructed in poly time (in size of F).
Proof. continued

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Output: Is F satisfiable?

Idea: - construct a graph G and choose a number k such that
 G has an independent set of size $\geq k$ iff F is satisfiable
- run the Independent Set algorithm on G, k
- return its answer
Input: A 3-SAT formula \(F \) with clauses \(C_1 \ldots C_m \) on variables \(x_1 \ldots x_n \)

Output: Is \(F \) satisfiable?

Idea: - construct a graph \(G \) and choose a number \(k \) such that
 - \(G \) has an independent set of size \(\geq k \) iff \(F \) is satisfiable
 - run the Independent Set algorithm on \(G, k \)
 - return its answer

Construction:
- For each clause \(C_i \) with literals \(l_1, l_2, l_3 \), make 3 vertices joined by 3 edges
- if two literals are opposite, join them with an edge.
- \(k := m \)

Runtime: Prove that \(G \) can be constructed in poly time (in the size of \(F \)).
\(G \) has \(3m \) vertices and can be constructed in time polynomial in \(m \) and \(n \)

Correctness: prove \(G \) has an independent set of size \(\geq k \) iff \(F \) is satisfiable
 - if \(F \) is satisfiable then each clause has (at least) one True literal. Choose the corresponding \(m \) vertices of \(G \). They are independent.
 - if \(G \) has an independent set of size \(\geq m \) there must be one in each triangle. Set the corresponding literals True. This is valid, and satisfies \(F \).

This completes the proof that Independent Set is NP-complete.
Definition. Problem X reduces to problem Y, written $X \leq Y$, if an algorithm for Y can be used to make an algorithm for X.

Definition. A many one reduction $X \leq Y$ uses the algorithm for Y once and outputs its answer.

Mnemonic: many-one = “one-shot”

The form of a polynomial time many-one reduction $X \leq_p Y$:

Assume we have an algorithm A for Y

Algorithm for X:
- take input x and construct an input y for problem Y
- run A on y
- return the answer

For correctness we just need to prove:
the answer for x is YES iff the answer for y is YES

For poly time we just need to prove:
the construction of y takes polynomial time.
How to prove that a decision problem Z is NP-complete

1. prove Z in NP
2. prove $X \leq_P Z$ for some known NP-complete problem X.
 Use a many-one reduction.
Summary of Lecture 19

definition of NP-complete, first NP-completeness proofs

What you should know from Lecture 19 (and Lecture 20)

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

- more examples of NP-completeness proofs