Recall

Summary of Lecture 19

How to prove a problem Z is NP-complete

1. Z is in NP
2. X ≤ₚ Z, for some known NP-complete problem X. Use a **many-one** reduction.

Next: more NP-completeness proofs
Why use many-one reductions?

- a many-one reduction is a special case of Turing reduction, so it is a stronger result to prove that there is a many-one reduction

- it gives more structure and will make your NP-completeness proofs easier to find and to prove correct

- convention

Is there always a many-one reduction to prove that a problem is NP-complete? i.e., if X, Z are in NP and $X \leq_p Z$ with a Turing reduction, then is there a many-one reduction $X \leq_p Z$?

This is an open question, but it holds in every known case.
Clique.
Input: Graph $G = (V, E)$, number k.
Question: Does G have a clique of size $\geq k$?

Recall: a clique is a set of vertices, every two joined by an edge.

Observe: $C \subseteq V$ is a clique in G iff C is an independent set in G^c.

Recall: G^c, the complement of G, has vertices V, edge (u, v) iff $(u, v) \not\in E(G)$.

Theorem. Clique is NP-complete.

Proof.

1. Clique is in NP.

 certificate: the vertices C of the clique
 verification: check $\geq k$ vertices, every pair joined by edge.
 This verifies iff C is a clique $\geq k$. Poly. time to verify.

2. [a known NP-complete problem] \leq_P Clique
2. Independent Set $\leq_{P} \text{Clique}$

Assume we have a polynomial time algorithm for Clique. Make a polynomial time algorithm for Independent Set — use a many-one reduction.

Input for Independent Set: Graph $G = (V, E)$, number k.
Output: Does G have an independent set of size k?

- construct a graph G' and choose a number k' such that
 G has an independent set of size $\geq k$ iff G' has a clique of size $\geq k'$
- run the Clique algorithm on G', k'
- return its answer

Construction: let $G' = G^c$ and $k' = k$

Runtime: clearly poly. time

Correctness:
G has an ind. set of size $\geq k$ iff
G^c has a clique of size $\geq k$.
Vertex Cover.

Input: Graph $G = (V, E)$, number k.
Question: Does G have a vertex cover of size $\leq k$?

A vertex cover is a set $S \subseteq V$ such that every edge $(u, v) \in E$ has u or v (or both) in S.

Observe: $S \subseteq V$ is a vertex cover in G iff $V - S$ is an independent set in G.

Theorem. Vertex Cover is NP-complete.

Proof.

1. Vertex Cover is in NP.

Exercise.

2. Ind. Set \leq_p Vertex Cover
2. Independent Set \(\leq_P \) Vertex Cover

Assume we have a polynomial time algorithm for Vertex Cover. Make a polynomial time algorithm for Independent Set — use a many-one reduction.

Input for Independent Set: Graph \(G = (V,E) \), number \(k \).
Output: Does \(G \) have an independent set of size \(k \)?

- construct a graph \(G' \) and choose a number \(k' \) such that
 - \(G \) has an independent set of size \(\geq k \) iff \(G' \) has a vertex cover of size \(\leq k' \)
 - run the Vertex Cover algorithm on \(G' \), \(k' \)
 - return its answer

Construction: \(G' = G \quad k' = n - k \)

Runtime: \(\text{poly. time} \)

Correctness: Prove \(\bigcirc \)

\[\Rightarrow G \text{ has ind. set of size } \geq k \] Then \(V \setminus I \) is a vertex cover \(|V \setminus I| \leq n - k \)

\[\Leftarrow G \text{ has a vertex cover } S, |S| \leq n - k \] Then \(V \setminus S \) is an ind. set of size \(\geq k \).
Road map of NP-completeness

Circuit SAT \leq_P 3-SAT

later

\[\leq_P \]

Ind. Set \leq_P Vertex Cover \leq_P Set Cover

\[\leq_P \]

Ham.cycle \leq_P TSP

\[\leq_P \]

Subset Sum
History of NP-completeness

Proof that 3-SAT is NP-complete due to Stephen Cook, U. Toronto, 1971, and independently to Leonid Levin.

The other “first” NP-completeness proofs we cover are due to Richard Karp, UC Berkeley.

Summary of Lecture 20, Part 1

Clique and Vertex Cover are NP-complete

What you should know from Lecture 20, Part 1:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

\[
\begin{align*}
\text{Ind. Set} & \leq_p \text{Vertex Cover} \leq_p \text{Set Cover} \\
\text{Circuit SAT} & \leq_p \text{3-SAT} \leq_p \text{Ham. cycle} \leq_p \text{TSP} \\
& \leq_p \text{Subset Sum}
\end{align*}
\]
Directed Hamiltonian cycle.
Input: Directed graph $G = (V,E)$.
Question: Does G have a directed Hamiltonian cycle?

Theorem. Directed Hamiltonian cycle is NP-complete.
Proof.

1. Directed Hamiltonian cycle is in NP. exercise
2. 3-SAT \leq_P Directed Hamiltonian cycle

Assume we have a polynomial time algorithm for Directed Ham. cycle. Make a polynomial time algorithm for 3-SAT — use a many-one reduction.

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Output: Is F satisfiable?
- construct a directed graph G such that
 $\text{G has a directed Ham. cycle iff F is satisfiable}$
- run the Directed Ham. cycle algorithm on G
- return its answer

This seems tricky! The problems seem so different!
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

Idea: for each variable x_i, there is a part of G (a “variable gadget”) that chooses whether x_i is True or False
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

All the variable gadgets together:
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

For each clause C_j we must make a “clause gadget” such that the cycle can go through the clause gadget iff one of the literals is True.

Clause gadget for clause $C = (x_1 \lor \neg x_2 \lor x_3)$

Idea: visit vertex C by detouring off the x_1 True path OR the x_2 False path OR the x_3 True path
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Hamiltonian cycle iff F is satisfiable

For each clause C_j we must make a “clause gadget” such that the cycle can go through the clause gadget iff one of the literals is True.

Note: make sure to leave a spare vertex between two clause detours
Claim. \(G \) has a directed Ham. cycle iff \(F \) is satisfiable

Proof.

\(\leftarrow \) Suppose \(F \) is satisfiable. Traverse the variable paths in the True/False directions. For each clause \(C \), at least one literal is True — take the detour from that path to vertex \(C \). This gives a directed Ham. cycle.

\(\Rightarrow \) Suppose \(G \) has a directed Hamiltonian path.

Claim. The only way to visit \(C \) is by detouring off a variable path.

Thus the Hamiltonian cycle must traverse a True or False path for each variable, and must visit each clause vertex off such a path. So this corresponds to a satisfying truth-value assignment.

Claim. This construction takes polynomial time.
Theorem. [undirected] Hamiltonian cycle is NP-complete.

Proof.
1. Hamiltonian cycle is in NP.

2. Directed Hamiltonian cycle \(\leq_P \) Hamiltonian cycle
 Assume we have a polynomial time algorithm for Ham. cycle. Make a polynomial time algorithm for Directed Ham. cycle — use a many-one reduction.

 Input: A directed graph \(G \).
 Output: Does \(G \) have a directed Ham. cycle?
 - construct an undirected graph \(G' \) such that
 \(G \) has a directed Ham. cycle iff \(G' \) has a Ham. cycle
 - run the Ham. cycle algorithm on \(G' \)
 - return its answer

Ex. Show that it is wrong to omit \(v \) and just use edge \((u, u')\)
Exercises.

Theorem. Travelling Salesman Problem (directed or undirected) is NP-complete.

Theorem. Hamiltonian *path* (directed or undirected) is NP-complete.
Summary of Lecture 20

NP-completeness of Independent Set, Vertex Cover, Hamiltonian cycle, TSP

What you should know from Lecture 20:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

\[\text{Circuit SAT} \leq_p 3\text{-SAT} \leq_p \text{Ind. Set} \leq_p \text{Vertex Cover} \leq_p \text{Set Cover} \leq_p \text{Ham. cycle} \leq_p \text{TSP} \leq_p \text{Subset Sum}\]