Recall

Summary of Lecture 19

How to prove a problem Z is NP-complete

1. Z is in NP
2. $X \leq_p Z$, for some known NP-complete problem X. Use a \textit{many-one} reduction.

Next: more NP-completeness proofs
Why use a many-one reductions?

- a many-one reduction is a special case of Turing reduction, so it is a stronger result to prove that there is a many-one reduction

- it gives more structure and will make your NP-completeness proofs easier to find and to prove correct

- convention

Is there always a many-one reduction to prove that a problem is NP-complete? i.e., if X, Z are in NP and $X \leq_P Z$ with a Turing reduction, then is there a many-one reduction $X \leq_P Z$?

This is an open question, but it holds in every known case.
Clique.

Input: Graph $G = (V, E)$, number k.

Question: Does G have a clique of size $\geq k$?

Recall: a clique is a set of vertices, every two joined by an edge.

Observe: $C \subseteq V$ is a clique in G iff C is an independent set in G^c

Recall: G^c, the complement of G, has vertices V, edge (u,v) iff $(u,v) \notin E(G)$

Theorem. Clique is NP-complete.

Proof.

1. Clique is in NP.

 Certificate:

 Verification:

2. [a known NP-complete problem] \leq_p Clique
2. Independent Set \leq_P Clique

Assume we have a polynomial time algorithm for Clique. Make a polynomial time algorithm for Independent Set — use a many-one reduction.

Input for Independent Set: Graph $G = (V,E)$, number k.
Output: Does G have an independent set of size k?

- construct a graph G' and choose a number k' such that G has an independent set of size $\geq k$ iff G' has a clique of size $\geq k'$
- run the Clique algorithm on G', k'
- return its answer

Construction:

Runtime:

Correctness:
Vertex Cover.

Input: Graph $G = (V, E)$, number k.

Question: Does G have a vertex cover of size $\leq k$?

A *vertex cover* is a set $S \subseteq V$ such that every edge $(u, v) \in E$ has u or v (or both) in S.

Observe: $S \subseteq V$ is a vertex cover in G iff $V - S$ is an independent set in G.

Theorem. Vertex Cover is NP-complete.

Proof.

1. Vertex Cover is in NP.

Exercise.

2.
2. Independent Set \leq_P Vertex Cover

Assume we have a polynomial time algorithm for Vertex Cover. Make a polynomial time algorithm for Independent Set — use a many-one reduction.

Input for Independent Set: Graph $G = (V,E)$, number k.
Output: Does G have an independent set of size k?

- construct a graph G' and choose a number k' such that
 G has an independent set of size $\geq k$ iff G' has a vertex cover of size $\leq k'$
- run the Vertex Cover algorithm on G', k'
- return its answer

Construction:

Runtime:

Correctness:
Road map of NP-completeness

Circuit SAT \leq_P 3-SAT \leq_P Ham.cycle \leq_P TSP

\leq_P Ind. Set \leq_P Vertex Cover \leq_P Set Cover

\leq_P Subset Sum
History of NP-completeness

Proof that 3-SAT is NP-complete due to Stephen Cook, U. Toronto, 1971, and independently to Leonid Levin.

The other “first” NP-completeness proofs we cover are due to Richard Karp, UC Berkeley.

Richard Karp

Stephen Cook, 1968

https://ocul-wtl.orimo.exlibrisgroup.com/permalink/01OCUL_WTL/156lh75/cdi_crossref_primary_10_2307_2273574

https://ocul-wtl.orimo.exlibrisgroup.com/permalink/01OCUL_WTL/156lh75/cdi_crossref_primary_10_2307_2273574
Summary of Lecture 20, Part 1

Clique and Vertex Cover are NP-complete

What you should know from Lecture 20, Part 1:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

\[
\text{Ind. Set} \leq_p \text{Vertex Cover} \leq_p \text{Set Cover}
\]

\[
\text{Circuit SAT} \leq_p 3\text{-SAT} \leq_p \text{Ham.cycle} \leq_p \text{TSP}
\]

\[
\text{Subset Sum}
\]
Directed Hamiltonian cycle.

Input: Directed graph $G = (V,E)$.

Question: Does G have a directed Hamiltonian cycle?

Theorem. Directed Hamiltonian cycle is NP-complete.

Proof.

1. Directed Hamiltonian cycle is in NP.

2. 3-SAT \leq_p Directed Hamiltonian cycle

 Assume we have a polynomial time algorithm for Directed Ham. cycle. Make a polynomial time algorithm for 3-SAT — use a many-one reduction.

 Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

 Output: Is F satisfiable?

 - construct a directed graph G such that G has a directed Ham. cycle iff F is satisfiable
 - run the Directed Ham. cycle algorithm on G
 - return its answer

This seems tricky! The problems seem so different!
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

Idea: for each variable x_i, there is a part of G (a “variable gadget”) that chooses whether x_i is True or False
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

All the variable gadgets together:
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

For each clause C_j we must make a “clause gadget” such that the cycle can go through the clause gadget iff one of the literals is True.

Clause gadget for clause $C = (x_1 \vee \neg x_2 \vee x_3)$

Idea: visit vertex C by detouring off the x_1 True path OR the x_2 False path OR the x_3 True path
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct a directed graph G such that

G has a directed Ham. cycle iff F is satisfiable

For each clause C_j we must make a “clause gadget” such that the cycle can go through the clause gadget iff one of the literals is True.

Note: make sure to leave a spare vertex between two clause detours
Claim. G has a directed Ham. cycle iff F is satisfiable

Proof.

\Leftarrow Suppose F is satisfiable. Traverse the variable paths in the True/False directions. For each clause C, at least one literal is True — take the detour from that path to vertex C. This gives a directed Ham. cycle.

\Rightarrow Suppose G has a directed Hamiltonian path.

Claim. The only way to visit C is by detouring off a variable path.

Suppose we use (a,C). Show must use (C,b). (e.g. can’t have e,b,a,C then to different chain). Can’t use (a,d) so must enter d from left. Must use (d,a). Can’t use (b,a). Must use (b,e). Must use (C,b).

Thus the Hamiltonian cycle must traverse a True or False path for each variable, and must visit each clause vertex off such a path. So this corresponds to a satisfying truth-value assignment.

Claim. This construction takes polynomial time.
Theorem. [undirected] Hamiltonian cycle is NP-complete.

Proof.
1. Hamiltonian cycle is in NP.

2. Directed Hamiltonian cycle \leq_p Hamiltonian cycle
 Assume we have a polynomial time algorithm for Ham. cycle. Make a polynomial time algorithm for Directed Ham. cycle — use a many-one reduction.

 Input: A directed graph G.
 Output: Does G have a directed Ham. cycle?
 - construct an undirected graph G' such that
 G has a directed Ham. cycle iff G' has a Ham. cycle
 - run the Ham. cycle algorithm on G'
 - return its answer
Exercises.

Theorem. Travelling Salesman Problem (directed or undirected) is NP-complete.

Theorem. Hamiltonian path (directed or undirected) is NP-complete.
Summary of Lecture 20

NP-completeness of Independent Set, Vertex Cover, Hamiltonian cycle, TSP

What you should know from Lecture 20:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

- Circuit SAT \leq_P 3-SAT
- Ind. Set \leq_P Vertex Cover \leq_P Set Cover
- Ham. cycle \leq_P TSP
- Subset Sum