Recall

Summary of Lecture 20

NP-completeness of Independent Set, Vertex Cover, Hamiltonian cycle, TSP

What you should know from Lecture 20:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

\[
\text{Circuit SAT} \leq_P 3\text{-SAT} \leq_P \text{Ind. Set} \leq_P \text{Vertex Cover} \leq_P \text{Set Cover} \\
\leq_P \text{Ham. cycle} \leq_P \text{TSP} \leq_P \text{Subset Sum}
\]

These are harder proofs. Goal: appreciate trickier constructions; establish the results.
Subset Sum.
Input: Numbers w_1, \ldots, w_n, W
Question: Is there a subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i = W$

Theorem. Subset Sum is NP-complete.
Proof.

1. Subset Sum is in NP. (done in previous lecture)
2. 3-SAT \leq_P Subset Sum

Assume we have a polynomial time algorithm for Subset Sum. Make a polynomial time algorithm for 3SAT.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Output: Is F satisfiable?
- construct an instance of Subset Sum such that it has a solution iff F is satisfiable
- run the Subset Sum algorithm
- return its answer

We’ve seen how to turn 3-SAT into a packing problem (Independent Set) and into a sequencing problem (Hamiltonian cycle) and now we must turn it into a number problem.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\ldots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.g., $C_1 = (x_1 \lor \neg x_2 \lor x_3)$
$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j

$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

= 0 otherwise

Regard the rows as binary (or other base) numbers.
Choosing a number = choosing a row. Adding numbers = adding up rows.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\cdots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>\neg x_1</td>
<td>0</td>
<td>1</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\neg x_2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\neg x_3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$C_1 = (x_1 \lor \neg x_2 \lor x_3)$
$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j

$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

We assume no clause contains the same literal twice.

Target sum ≥ 1 \cdots to ensure we pick ≥ 1 literal in each clause

Regard the rows as binary (or other base) numbers.
Choosing a number = choosing a row. Adding numbers = adding up rows.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\ldots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$e.g.$ $C_1 = (x_1 \lor \neg x_2 \lor x_3)$
$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j
$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

We assume no clause contains the same literal twice.

Target sum $\geq 1 \geq 1 \ldots$ to ensure we pick ≥ 1 literal in each clause.

Regard the rows as binary (or other base) numbers.
Choosing a number = choosing a row. Adding numbers = adding up rows.

Issues: (1) ensure we don’t choose row x_i and row $\neg x_i$
(2) how can we ensure sum ≥ 1? What can the sum be? 1 or 2 or 3.
Add slack rows of 1 and 2 so sum can always be 4.
Finally:

$$W = \text{interpret last row in base 10 numbers} = \text{one for each row, interpreting the row in base 10}$$

What is the size of the Subset Sum Problem?

$$2n + 2m \text{ numbers}$$

$$\text{each with } n+m \text{ base 10 digits.}$$

Why base 10?
Large enough to avoid carries. And familiar.

Claim. Polynomial time.
Claim. \(F \) is satisfiable iff there is a subset of the numbers with sum \(W \).

Proof.

⇒ Suppose \(F \) is satisfiable. If \(x_i \) is True, pick row \(x_i \). If \(x_i \) is False, pick row \(\neg x_i \).
Then column \(x_i \) adds up to its target 1, and column \(C_j \) adds to 1, 2, or 3.
Next we choose some slack rows \(S_{j,1} \) and \(S_{j,2} \) to increase the sum to 4:

\[
\begin{align*}
1 + S_{j,1} + S_{j,2} & = 4 \\
2 + S_{j,2} & = 4 \\
3 + S_{j,1} & = 4
\end{align*}
\]

This gives a set of rows (i.e. numbers) that sum to \(W \).

⇐ Suppose there is a subset with sum \(W \).
Note that any whole column sum is \(\leq 6 \), so no carries occur, and column sums must give the target digits.
Because \(x_i \) column sum is 1, we must have chosen row \(x_i \) or row \(\neg x_i \) (not both) — set the variable accordingly.
Because column \(C_j \) sum is 4 and slacks sum to \(\leq 3 \), we must have chosen a literal to satisfy clause \(C_j \). Thus \(F \) is satisfiable.
Summary of Lecture 21, Part 1

Subset Sum is NP-complete

What you should know from Lecture 21, Part 1:

- appreciate that NP-hardness proofs can be tricky, and that we can use numbers to encode things

Next:

\[
\begin{align*}
\text{Circuit SAT} & \leq_p 3\text{-SAT} \\
\text{ind. Set} & \leq_p \text{Vertex Cover} \leq_p \text{Set Cover} \\
\text{Ham. cycle} & \leq_p \text{TSP}
\end{align*}
\]

\[\leq_p \text{Subset Sum}\]
The first NP-completeness proofs.

Circuit Satisfiability

A *circuit* is a directed acyclic graph with:

- *sources* (no edge entering), labelled with variables or 0 or 1 — inputs
- one *sink* (no edge leaving) — output
- *internal nodes*

A circuit *computes an output* (in the obvious way) when values are given for the input variables.
Circuit Satisfiability

Input: A circuit C

Question: Is there an assignment of values to inputs such that the output is 1? i.e., is C satisfiable?

Theorem. Circuit SAT is NP-complete.

Proof.

1. Circuit SAT is in NP. (easy, details omitted)

2. this is the first NP-completeness proof so we must prove that
 for every Y in NP, $Y \leq_p$ Circuit SAT
 i.e. for every Y in NP, there is an algorithm that maps any input y for Y to a circuit C s.t. y is a YES input iff C is satisfiable.

High level idea only.

What can we use? Just that $Y \in$ NP,
 i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g, ($g =$ certificate or “guess”) and outputs YES/NO. Property of A:
 y is a YES instance for Y iff $\exists g$ (of poly size) s.t. $A(y,g)$ outputs YES
2. this is the first NP-completeness proof so we must prove that
 for every Y in NP, $Y \leq_P \text{Circuit SAT}$

 What can we use? Just that $Y \in \text{NP}$,
i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g,
($g =$ certificate or “guess”) and outputs YES/NO. Property of A:

 y is a YES instance for Y iff $\exists g$ (of poly size) s.t. $A(y, g)$ outputs YES

Idea: Convert algorithm A with known input y and unknown input g
to a circuit C with input variables $=$ bits of g
such that C is satisfiable iff $\exists g$ s.t. $A(y, g)$ outputs YES

Write a program for algorithm A. Compile it. Assemble . . .
At the hardware level, A is implemented by $\&$, \lor, \neg gates.
We get a circuit C.

Inputs to C: bits of y (known), bits of g (variables)
Internal nodes of circuit: memory locations after each time step of algorithm A.

Because $\text{size}(g)$ is polynomial and A runs in polynomial time, the circuit has polynomial size.

Is there an algorithm to convert A, y to C? Yes: compiler, assembler, etc.
and this takes polynomial time.
Summary of Lecture 21, Part 2

Circuit SAT is NP-complete — the first NP-completeness proof (at least the idea)

Next:

\[
\begin{align*}
\text{Circuit SAT} & \leq_P 3\text{-SAT} & \leq_P \text{Ind. Set} & \leq_P \text{Vertex Cover} & \leq_P \text{Set Cover} \\
& & \leq_P \text{Ham.cycle} & \leq_P \text{TSP} \\
& & & \leq_P \text{Subset Sum}
\end{align*}
\]
Theorem. 3-SAT is NP-complete.

Proof.

1. 3-SAT is in NP. (easy, details omitted)

2. Circuit SAT \leq_p 3-SAT

 Assume we have a polynomial time algorithm for 3-SAT. Make a polynomial time algorithm for Circuit SAT.

 Input: A circuit C
 Output: Is C satisfiable?
 - construct a 3-SAT formula F such that C is satisfiable iff F is satisfiable
 - run the 3-SAT algorithm
 - return its answer

 Intuitively (or from CS 245), circuits and formulas are equivalent. Just convert circuit C to formula F.
Convert circuit C to formula F.

the obvious way:

\[(\neg x_1 \lor x_3) \land x_3 \lor \neg (x_2 \land x_3)\]

Caution: Is this polynomial size?

No!
Convert circuit \(C \) to formula \(F \).

the better way: make a variable \(x_u \) for each node \(u \) in the circuit

\[
\overbrace{x_u \equiv x_v \lor x_w}^{\text{as 3-SAT clauses}} \land \overbrace{(\neg x_u \lor x_v \lor x_w)}^{\text{as 3-SAT clauses}} \land (x_u \lor \neg x_v) \land (x_u \lor \neg x_w)
\]

Note: \(a \equiv b \) means \((\neg a \lor b) \land (a \lor \neg b) \)

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: \(F = \bigwedge \) of all clauses \(\land x_{\text{output}} \)
Convert circuit C to formula F.

the better way: make a variable x_u for each node u in the circuit

\[x_u \equiv x_v \lor x_w \]

as clauses:
\[\neg x_u \lor (x_v \land \neg x_u) \lor (x_u \lor \neg x_v) \lor (x_u \lor x_v) \]

\[x_u \equiv x_v \land x_w \]

\[\neg x_u \lor (x_v \lor x_u) \lor (x_u \lor \neg x_v) \lor (x_u \lor \neg x_w) \]

Note: $a \equiv b$ means $\neg a \lor b \land a \lor \neg b$

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: $F = \land$ of all clauses $\land x_{\text{output}}$
Claim 1. F has polynomial size and can be computed in polynomial time.

Claim 2. F is satisfiable iff C is satisfiable.

Proof.
\(\Leftarrow\) Suppose C is satisfiable. Then assigning True/False to variables of F according to C's computation will satisfy F.

\(\Rightarrow\) Suppose F is satisfiable. Then there is an assignment of True/False to the variables (original inputs + new variables for circuit nodes) that makes F True. For circuit C, use the same values for the input variables. By construction, the variables for the circuit nodes capture the evaluation of C. And $x_{\text{output}} = 1$ (True). Therefore C is satisfiable.
What you should know from Lecture 21.

Appreciate NP-completeness proofs. Know some basic NP-complete problems.

Next:

A glimpse of more recent results on NP-completeness.