Recall

Summary of Lecture 20

NP-completeness of Independent Set, Vertex Cover, Hamiltonian cycle, TSP

What you should know from Lecture 20:

- how to prove a problem is NP-complete using a polynomial time many-one reduction

Next:

\[
\begin{align*}
\text{Circuit SAT} & \leq_P \text{3-SAT} \\
\text{Ind. Set} & \leq_P \text{Vertex Cover} \leq_P \text{Set Cover} \\
\leq_P & \text{Ham. cycle} \leq_P \text{TSP} \\
\leq_P & \text{Subset Sum} \\
\end{align*}
\]

These are harder proofs. Goal: appreciate trickier constructions; establish the results.
Subset Sum.

Input: Numbers w_1, \ldots, w_n, W

Question: Is there a subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i = W$

Theorem. Subset Sum is NP-complete.

Proof.

1. Subset Sum is in NP. (done in previous lecture)

2. 3-SAT \leq_p Subset Sum

 Assume we have a polynomial time algorithm for Subset Sum. Make a polynomial time algorithm for 3SAT.

 Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$

 Output: Is F satisfiable?

 - construct an instance of Subset Sum such that it has a solution iff F is satisfiable
 - run the Subset Sum algorithm
 - return its answer

We’ve seen how to turn 3-SAT into a packing problem (Independent Set) and into a sequencing problem (Hamiltonian cycle) and now we must turn it into a number problem.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\ldots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ddots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

E.g. $C_1 = (x_1 \lor \neg x_2 \lor x_3)$
$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j
$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

We assume no clause contains the same literal twice.

Regard the rows as binary (or other base) numbers.
Choosing a number = choosing a row. Adding numbers = adding up rows.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Construct an instance of Subset Sum such that it has a solution iff F is satisfiable.

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\cdots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>$-x_1$</td>
<td>0</td>
<td>1</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-x_2$</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-x_3$</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

E.g. $C_1 = (x_1 \lor \neg x_2 \lor x_3)$

$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j

$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

We assume no clause contains the same literal twice.

Target sum $\geq 1 \cdot 1 \cdot \cdots$ to ensure we pick ≥ 1 literal in each clause.

Regard the rows as binary (or other base) numbers.
Choosing a number = choosing a row. Adding numbers = adding up rows.
Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\ldots</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

E.g. $C_1 = (x_1 \lor \neg x_2 \lor x_3)$
$C_2 = (\neg x_1 \lor x_4 \lor x_5)$

General rule

$M[x_i, C_j] = 1$ if x_i in C_j

$M[\neg x_i, C_j] = 1$ if $\neg x_i$ in C_j

We assume no clause contains the same literal twice.

Target sum $\geq 1 \geq 1 \ldots$ to ensure we pick ≥ 1 literal in each clause

Issues: (1) ensure we don’t choose row x_i and row $\neg x_i$
(2) how can we ensure sum ≥ 1? What can the sum be? 1 or 2 or 3.
Add slack rows of 1 and 2 so sum can always be 4.
Finally:

W = interpret last row in base 10

numbers = one for each row, interpreting the row in base 10
What is the size of the Subset Sum Problem?

Why base 10?
Large enough to avoid carries. And familiar.

Claim. Polynomial time.
Claim. F is satisfiable iff there is a subset of the numbers with sum W.

Proof.

⇒ Suppose F is satisfiable. If x_i is True, pick row x_i. If x_i is False, pick row $\neg x_i$.
Then column x_i adds up to its target 1, and column C_j adds to 1, 2, or 3.
Next we choose some slack rows $s_{j,1}$ and $s_{j,2}$ to increase the sum to 4:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>= 4</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>= 4</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>= 4</td>
</tr>
</tbody>
</table>

This gives a set of rows (i.e. numbers) that sum to W.

⇐ Suppose there is a subset with sum W.
Note that any whole column sum is ≤ 6, so no carries occur, and column sums must give the target digits.
Because x_i column sum is 1, we must have chosen row x_i or row $\neg x_i$ (not both) — set the variable accordingly.
Because column C_j sum is 4 and slacks sum to ≤ 3, we must have chosen a literal to satisfy clause C_j. Thus F is satisfiable.
Summary of Lecture 21, Part 1

Subset Sum is NP-complete

What you should know from Lecture 21, Part 1:

- appreciate that NP-hardness proofs can be tricky, and that we can use numbers to encode things

Next:

\[
\text{Circuit SAT} \leq_p 3\text{-SAT} \leq_p \text{Ind. Set} \leq_p \text{Vertex Cover} \leq_p \text{Set Cover} \leq_p \text{Ham.cycle} \leq_p \text{TSP} \leq_p \text{Subset Sum}
\]

this should be second nature to you as a CS student!
The first NP-completeness proofs.

Circuit Satisfiability

A circuit is a directed acyclic graph with:

- **sources** (no edge entering), labelled with variables or 0 or 1 — inputs
- one **sink** (no edge leaving) — output
- **internal nodes**

A circuit **computes an output** (in the obvious way) when values are given for the input variables.
Circuit Satisfiability

Input: A circuit C

Question: Is there an assignment of values to inputs such that the output is 1? i.e., is C satisfiable?

Theorem. Circuit SAT is NP-complete.

Proof.

1. Circuit SAT is in NP. (easy, details omitted)

2. this is the first NP-completeness proof so we must prove that

 for every Y in NP, \leq_P Circuit SAT

 i.e. for every Y in NP, there is an algorithm that maps any input y for Y to a circuit C s.t. y is a YES input iff C is satisfiable.

 High level idea only.

 What can we use? Just that $Y \in$ NP,

 i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g, ($g =$ certificate or “guess”) and outputs YES/NO. Property of A:

 y is a YES instance for Y iff $\exists g$ (of poly size) s.t. $A(y,g)$ outputs YES
2. this is the first NP-completeness proof so we must prove that
 for every Y in NP, $Y \leq_P$ Circuit SAT

What can we use? Just that $Y \in$ NP,
i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g,
($g =$ certificate or “guess”) and outputs YES/NO. Property of A:

Idea: Convert algorithm A with known input y and unknown input g
to a circuit C with input variables = bits of g
such that C is satisfiable iff $\exists g$ (of poly size) s.t. $A(y,g)$ outputs YES

Write a program for algorithm A. Compile it. Assemble . . .
At the hardware level, A is implemented by \land, \lor, \neg gates.
We get a circuit C.

Inputs to C : bits of y (known), bits of g (variables)
Internal nodes of circuit: memory locations after each time step of algorithm A.

Because size(g) is polynomial and A runs in polynomial time, the circuit has
polynomial size.

Is there an algorithm to convert A, y to C? Yes: compiler, assembler, etc.
and this takes polynomial time.
Summary of Lecture 21, Part 2

Circuit SAT is NP-complete — the first NP-completeness proof (at least the idea)

Next:

Circuit SAT \leq_p 3-SAT

\leq_p Ind. Set \leq_p Vertex Cover \leq_p Set Cover

\leq_p Ham.cycle \leq_p TSP

\leq_p Subset Sum
Theorem. 3-SAT is NP-complete.

Proof.

1. 3-SAT is in NP. (easy, details omitted)

2. Circuit SAT \leq_P 3-SAT

 Assume we have a polynomial time algorithm for 3-SAT. Make a polynomial time algorithm for Circuit SAT.

 Input: A circuit C
 Output: Is C satisfiable?
 - construct a 3-SAT formula F such that
 C is satisfiable iff F is satisfiable
 - run the 3-SAT algorithm
 - return its answer

 Intuitively (or from CS 245), circuits and formulas are equivalent. Just convert circuit C to formula F.
Convert circuit C to formula F.

The obvious way:

Caution: Is this polynomial size?
Convert circuit C to formula F.

the better way: make a variable x_u for each node u in the circuit

Note: $a \equiv b$ means $(\neg a \lor b) \land (a \lor \neg b)$

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: $F = \land$ of all clauses $\land x_{output}$
Convert circuit C to formula F.

the better way: make a variable x_u for each node u in the circuit

\[
\begin{align*}
\chi_u & \equiv \chi_v \lor \chi_w \\
\text{as clauses:} & \\
(\neg \chi_u \lor \chi_v \lor \chi_w) \land (\chi_u \lor \neg \chi_v) \land (\chi_u \lor \neg \chi_w) \\
\chi_u & \equiv \chi_v \land \chi_w \\
(\neg \chi_u \lor \chi_v) \land (\neg \chi_u \lor \chi_w) \land (\chi_u \lor \neg \chi_v \lor \neg \chi_w) \\
\chi_u & \equiv \neg \chi_v \\
(\chi_u \lor \chi_v) \land (\neg \chi_u \lor \neg \chi_v)
\end{align*}
\]

Note: $a \equiv b$ means $(\neg a \lor b) \land (a \lor \neg b)$

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: $F = \land$ of all clauses $\lor x_{\text{output}}$
Claim 1. F has polynomial size and can be computed in polynomial time.

Claim 2. F is satisfiable iff C is satisfiable.

Proof.

\Leftarrow Suppose C is satisfiable. Then assigning True/False to variables of F according to C's computation will satisfy F.

\Rightarrow Suppose F is satisfiable. Then there is an assignment of True/False to the variables (original inputs + new variables for circuit nodes) that makes F True. For circuit C, use the same values for the input variables. By construction, the variables for the circuit nodes capture the evaluation of C. And $x_{output} = 1$ (True). Therefore C is satisfiable.
Summary of Lecture 21

- Ind. Set \leq_P Vertex Cover \leq_P Set Cover
- Circuit SAT \leq_P 3-SAT \leq_P Ham.cycle \leq_P TSP
- Subset Sum

What you should know from Lecture 21.

Appreciate NP-completeness proofs. Know some basic NP-complete problems.

Next:

A glimpse of more recent results on NP-completeness.