Many practical problems are NP-complete — no one knows a polynomial time algorithm, nor can we prove that none exists.

This lecture: What to do with NP-hard optimization problems.

1. Efficient exhaustive search (backtracking, branch-and-bound). Exponential time in the worst case, but can be useful.

2. Heuristics
 - there might be no guarantee on run-time nor on quality of solution.
 - local search — start with some solution and try to improve it via small “local” changes. hill climbing, simulated annealing
 - particle swarm, evolutionary algorithms

3. Approximation algorithms — today’s topic
 polynomial time and a guarantee on the quality of the solution
 e.g. for a minimization problem, might guarantee a solution $\leq 2 \cdot \text{min}$
Approximation algorithms for Vertex Cover

Recall A vertex cover is a set $S \subseteq V$ such that every edge $(u,v) \in E$ has u or v (or both) in S.

Optimization problem: find a minimum size vertex cover.

Recall that the decision version is NP-complete.

Greedy Algorithm 1

```plaintext
C := ∅
repeat
    C := C ∪ \{vertex of maximum degree\}
    remove covered edges
until no edges remain
```

Example

Note that this is a polynomial time algorithm.
Approximation algorithms for Vertex Cover

Greedy Algorithm 2

\[C := \emptyset \quad F := E \quad \text{// } F \text{ is uncovered edges} \]

while \(F \neq \emptyset \)

\[\text{pick } e = (u,v) \text{ from } F \]
\[\text{add } u \text{ and } v \text{ to } C \]
\[\text{remove edges incident to } u \text{ from } F \]
\[\text{remove edges incident to } v \text{ from } F \]

Note that this is a polynomial time algorithm

Example

Which is better, Algorithm 1 or Algorithm 2?
Approximation algorithms for Vertex Cover

Greedy Algorithm 2

\[C := \emptyset \quad F := E \quad \text{// F is uncovered edges} \]

while \(F \neq \emptyset \)

pick \(e = (u,v) \) from \(F \)

add \(u \) and \(v \) to \(C \)

remove edges incident to \(u \) from \(F \)

remove edges incident to \(v \) from \(F \)

Analysis of approximation factor

Let \(C \) = vertex cover found by Algorithm 2.
Let \(C_{OPT} \) = a minimum vertex cover.

Claim. \(|C| \leq 2 \cdot |C_{OPT}| \)

Proof.
Approximation algorithms for Vertex Cover

We say that Algorithm 2 has \textit{approximation factor} 2 because it produces a vertex cover of size \(\leq 2 \cdot \text{optimum} \).

\textbf{FACT:} Algorithm 1 has approximation factor \(\Theta(\log n) \).
It is worse than Algorithm 2.

Recall that Vertex Cover and Independent Set are closely related.
However:
\textbf{FACT:} Independent Set has no good approximation algorithm unless \(P = NP \).
Summary of Lecture 22, Part 1

Approximation algorithms for Vertex Cover

What you should know

- what is an approximation algorithm
- what does approximation factor mean
- some NP-complete problems have good approximation algorithms and some do not (unless P = NP)

Next:

Approximation algorithm for Travelling Salesman Problem in the Plane
Travelling Salesman Problem

Given a graph G, weights on edges, number k, does G have a TSP tour of length $\leq k$?

Euclidean TSP. For the complete graph on points in the plane, with weight = Euclidean distance.

FACT: even Euclidean TSP is NP-complete.

key property of Euclidean case: triangle inequality

$w(a, c) \leq w(a, b) + w(b, c)$
Approximation algorithm for Euclidean TSP

compute MST (min. spanning tree)

take a tour by walking around it
(we visit every vertex but maybe more than once)

take shortcuts to avoid revisiting vertices
note: by the triangle inequality, the short-cuts are shorter

This algorithm takes poly time.
Approximation algorithm for Euclidean TSP

Let \(t = \) length of tour found by this algorithm.
Let \(t_{\text{TSP}} = \) length of minimum TSP tour

Claim. \(t \leq 2 t_{\text{TSP}} \)

This means that in polynomial time, we can find a tour within 2 times the optimum.

Proof of Claim.
Let \(t_{\text{MST}} = \) length of MST
We say that the algorithm has \textit{approximation factor} 2 because it finds a tour of length at most 2 times the optimum, i.e. $t \leq 2 \, t_{TSP}$

\textbf{FACT:} the factor of 2 can be improved for this problem. For any $\epsilon > 0$ there is an algorithm that finds a tour of length $\leq (1+\epsilon) \, t_{TSP}$
But as $\epsilon \to 0$, the run time becomes exponential.
Summary of Lecture 22

good approximation algorithms for Vertex Cover and TSP.

What you should know

- what is an approximation algorithm
- what does approximation factor mean
- some NP-complete problems have good approximation algorithms and some do not (unless P = NP)