So far in this course:

- algorithms, efficiency, polynomial vs. exponential time

Bad news: some problems seem to have only exponential time algorithms (NP-complete problems)

Next in this course:

Worse news: some problems have no algorithm.

Examples:

1. Program equivalence. Given two programs, do they do the same thing? (i.e., produce the same output for the same input)

Grad student TAs would love to have this to check if student programs are equivalent to the model solution!
Examples of problems that have no algorithm

2. Tiling. Given a finite set of tiles with coloured edges, can they tile the plane? Colours must match when tiles touch. Tiles cannot be rotated. You can use infinitely many copies of each tile.

These tiles tile the plane but only aperiodically. “Wang” tiles, due to Hao Wang, 1961.
Examples of problems that have no algorithm

3. the Halting Problem. Given a computer program, does it halt?

e.g. while $n \neq 1$ do
 \[n := n - 2 \]
end

This program halts iff n is an odd positive number.

e.g. while $n \neq 1$ do
 if n is even then $n := n / 2$
 else $n := 3n + 1$
end

Does this program halt on all natural number inputs? No one knows.
Empirical evidence: the program has halted on every input tried.

12, 6,

"3n + 1 problem" \[\text{https://en.wikipedia.org/wiki/Collatz_conjecture} \]
We can convert any math statement about existence to a question about a program halting. This means that questions about a program halting can be very deep and hard.

“Does there exist a number n such that FOO(n) holds?”

turns into the program:

```plaintext
n := 1
while not FOO(n) do
    n := n + 1
end
```

e.g. Goldbach’s conjecture, 1742. Is every even number the sum of two primes? i.e., Does there exist a number 2n that is not the sum of two primes?

known to hold for all \(n < 4 \times 10^{18} \) but open for general \(n \)

When the existence question is open then no one knows whether the corresponding program halts.
Definition. A decision problem is **undecidable** if it has no algorithm.

Definition. (more general, not just for decision problems) A problem is **unsolvable** if it has no algorithm.

What is an algorithm?

As discussed earlier in the course, any of the following, all equivalent

- Java / C / Python programs
- pseudo-code
- Random Access Machine (RAM)
- Turing machine

We will study some undecidable problems.
History of undecidability.

Gottlob Frege (1848 - 1925)

Tried to put all of mathematics on a firm foundation — to formulate a set of axioms (e.g., axioms of Peano arithmetic, axioms of set theory) such that every true mathematical statement could be proved from the axioms using basic rules of logic.

His plan was foiled by Russell’s paradox.
History of undecidability.

Russell’s paradox.

Let $S = \text{the set of all sets that do not contain themselves}$
(this is like the bibliography of all bibliographies that do not list themselves, or the web pages that link to web pages that do not link to themselves)

Then, is S a member of itself?

Either answer (YES or NO) gives a contradiction.

Once a system is powerful enough, you can get self-references that lead to contradictions.

Russell’s paradox arises because for Set Theory, you need to define a set. Is a set just a collection of things? — That’s too powerful! It leads to Russell’s paradox. Moral (in this case) — we must define sets more carefully.

How does the idea of Russell’s paradox apply to computing? It allows us to prove that there are undecidable problems. If algorithms were powerful enough to decide all problems then we could decide something self-referential, and this gives a contradiction.
History of undecidability.

Bertrand Russell (1872 - 1970)

polymath, philosopher, logician, mathematician, historian, writer, social critic, political activist, Nobel laureate
FREGE ON RUSSELL'S PARADOX

Grundgesetze der Arithmetik, Vol. ii, Appendix, pp. 253-65

Hardly anything more unfortunate can befall a scientific writer than to have one of the foundations of his edifice shaken after the work is finished. This was the position I was placed in by a letter of Mr. Bertrand Russell, just when the printing of this volume was nearing its completion. It is a matter of my Axiom (V).* I have never disguised from myself its lack of the self-evidence that belongs to the other axioms and that must properly be demanded of a logical law. And so in fact I indicated this weak point in the Preface to Vol. i (p. VIII). I should gladly have dispensed with this foundation if I had known of any substitute for it. And even now I do not see how arithmetic can be scientifcally established; how numbers can be apprehended as logical objects, and brought under review; unless we are permitted—at least conditionally—to pass from a concept to its extension. May I always speak of the extension of a concept—speak of a class? And if not, how are the exceptional cases recognized? Can we always infer from one concept's coinciding in extension with another concept that any object that falls under the one falls under the other likewise? These are the questions raised by Mr. Russell's communication.

Solutum [sic] nimiris socios habuisse malorum. I too have this comfort, if comfort it is; for everybody who has made use in his proofs of extensions of concepts, classes, sets,* is in the same position as I. What is in question is not just my particular way of establishing arithmetic, but whether arithmetic can possibly be given a logical foundation at all.

But let us come to the point. Mr. Russell has discovered a contradiction which may now be stated.

* Here R. Dedekind's 'system' also came under this head.

A Vol. i, § 3, § 20. Cf. also Frege's Function and Begriff for an explanation of the ideas used, especially pp. 9-10, 18. For any (first-level) function of one argument, there is some object that is its value-range; and two such functions are by Axiom (V) equal in value-range if and only if their values always equal for any given argument. Concepts (ibid., pp. 15-16) are functions whose values can only be the True or the False. For the value-ranges of concepts, which are called their extension, the principle runs thus: 'Two concepts are equal in extension if and only if whatever falls under either falls under the other.'
History of undecidability.

In 1928 David Hilbert asked:

- Is mathematics **complete**, i.e., every statement can either be proved or disproved.

- Is mathematics **consistent**, i.e., no valid sequence of proof steps gives a contradiction such as $0 = 1$.

- Is mathematics **decidable**, i.e., is there an algorithm to determine the truth of any statement.
 “Entscheidungsproblem” (= decision problem)

In 1931 Gödel showed:

- every sufficiently powerful mathematical system is either inconsistent or incomplete

- such a system cannot be proved consistent within its own axioms

The third question remained open.
History of undecidability.

Hilbert’s third question — is there an algorithm to determine the truth of any mathematical statement?

was answered by Alan Turing in 1931. NO, there is no such algorithm.

Alan Turing (1912 - 1954)

https://en.wikipedia.org/wiki/Alan_Turing

Alan Turing: The Enigma

The Imitation Game
ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers, functions, and so forth to one another. This will include a development of the theory of functions of a real variable expressed in terms of computable numbers. According to my definition, a number is computable if its decimal can be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the computable numbers include all numbers which could naturally be regarded as computable. In particular, I show that certain large classes of numbers are computable. They include, for instance, the real parts of all algebraic numbers, the real parts of the zeros of the Bessel functions, the numbers \(\pi, e \), etc. The computable numbers do not, however, include all definable numbers, and an example is given of a definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to the class of real numbers, it is nevertheless enumerable. In §8 I examine certain arguments which would seem to prove the contrary. By the correct application of one of these arguments, conclusions are reached which are superficially similar to those of Gödel\(^\dagger\). These results

Summary of Lecture 24, Part 1

history and concept of undecidability

What you should know

- definition of undecidable

Next:

proving that problems are undecidable
Undecidability proofs.

As with NP-completeness, the first undecidability proof is hard, but the following undecidability proofs use reductions. The first problem we will show is undecidable:

The Halting Problem. Given an algorithm/program A and input w, does A halt on w?

Theorem. The Halting Problem is undecidable.

Proof.
Main idea: self-reference to get a contradiction as in Russell’s paradox. Suppose, for a contradiction, that there is a program H for the halting problem.

Input for H: program A and input w
Output: YES/NO, does A halt on w

Using H, we can make a new program H’

```
Input for H’: a program B
begin
  call H(B,B)
  if it returns NO then HALT
  else loop forever
end
```

H’ is like Russell’s set S. Russell’s question (Does S contain S?) becomes . . .
Suppose, for a contradiction, that there is a program H for the halting problem.

Input for H: program A and input w
Output: YES/NO, does A halt on w

Using H, we can make a new program H'

Input for H': a program B
begin
 call $H(B,B)$
 if it returns NO then HALT
 else loop forever
end

H' is like Russell's set S. Russell's question (Does S contain S?) becomes . . .
Undecidability proofs.

To show that other problems are undecidability — use reductions.

Recall

Definition. Problem X *reduces to* problem Y, written X ≤ Y, if an algorithm for Y can be used to make an algorithm for X. Think of this as “X is easier than Y”.

i.e., if Y has an algorithm, then so does X

Contrapositive:

if X is undecidable, then Y is undecidable

Road map of undecidability results:

- Halting Problem ≤ Halt-no-input
- Halting Problem ≤ Tiling
- Program Equivalence
- Program Verification
More undecidable problems.

Halt-no-input. Given a program A (no input), does A halt?

Theorem. Halt-no-input is undecidable.

Proof. Show that: Halting problem \leq Halt-no-input

Assume we have an algorithm P that decides Halt-no-input.

Input for P: program A
Output: YES/NO does A halt

Build an algorithm to decide the Halting problem
Input: program B, input w
Output: YES/NO does B halt on input w?
More undecidable problems.

Program Verification. Given a program and specification of the inputs and corresponding outputs, does the program meet the specifications?

Theorem. Program Verification is undecidable.

So automatic program checking is impossible.

Proof. Show that: \(\text{Halt-no-input} \leq \text{Program Verification} \).

Assume we have an algorithm \(V \) that decides Program Verification.

- **Input for \(V \):** program + input/output specs
- **Output:** YES/NO does the program meet the specs

Build an algorithm to decide Halt-no-input

- **Input:** program \(A \)
- **Output:** YES/NO does \(A \) halt?

Note that we need a finite specification on inputs/outputs.
More undecidabe problems.

Program Equivalence. Given two programs, do they do the same thing (i.e., produce same output for same input?)

Theorem. Program Equivalence is undecidable.

Proof. Show that: $\text{Halt-no-input} \leq \text{Program Equivalence}$.

The reduction is very similar to the above.

Construct A' as above.

Construct program B: read input (and ignore it)

output 1

Then ask if A' and B are equivalent.

They are equivalent iff A halts.

Ex. Fill in the details.
There are many more interesting undecidable problems.

Finally, to connect this topic with the earlier part of the course:
Are there interesting classes between NP and decidable?

\[P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{EXP} \subseteq \text{decidable} \subseteq \text{all decision problems} \]

known: \(P \neq \text{EXP} \), but all else is open.

OPEN. Is \(P = \text{PSPACE} \)?

Where to learn more about undecidability and complexity classes: CS 360 and CS 365.

Where to learn more about algorithms: CS 466, Combinatorial Optimization.
Summary of Lecture 24

undecidability
 - definition
 - examples of undecidable problems
 - proofs of undecidability

What you should know

 - definition of undecidable

 - how to prove a problem is undecidable (use Turing reduction ≤)