CS 341: Algorithms Lecture 1: Course Introduction

Armin Jamshidpey Collin Roberts

Based on lecture notes by Eric Schost and many previous CS 341 instructors ´

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Staff

Instructors

- Armin Jampshidpey
- Mark Petrick
- Collin Roberts

ISC

• Sylvie Davies (sldavies)

Electronic communication

Course webpage:

- Course Outline
- Lecture Slides

Piazza

- Make sure you are signed up using your UWaterloo email address
- <http://piazza.com/uwaterloo.ca/winter2025/cs341>
- posting solutions to assignments is forbidden

email

• use your uwaterloo address

Assignments, exams, project, etc

- **5 assignments** (20%)
- **2 programming questions** (4%)
- **Midterm** (30%)
	- Monday, Feb 24, 7:00-8:50pm.
- **Final** (46%)
	- TBA

In order to pass the course, you **must**:

- earn half of the written assignment points and
- earn half of the exam points.

If you don't meet the above requirement, your final mark will be the smaller of the normal calculation and a mark of 46.

References

- **Slides**
	- posted before the lecture (expectedly)
- **Textbooks**
	- **Introduction to Algorithms**, Cormen, Leiserson, Rivest, Stein [CLRS]
	- **Algorithm Design**, Kleinberg, Tardos [KT]
	- **Algorithms**, Dasgupta, Papadimitriou, Vazirani [DPV]

This course

What you should know

- CS240-level data strucures and algorithms
- big-O notation
- maybe a bit of math (matrices, for instance)

What we will do

- a lot of algorithms
- pseudo-code
- proofs for correctness and runtime

What we will not do

• read/write code in class

Tentative syllabus

- divide-and-conquer, master theorem
- breadth-first and depth-first search
- greedy algorithms
- dynamic programming
- NP-completeness

Cost of algorithms

Inputs

- parameterized by an integer *n*, called the size
- e.g., length of an array that we want to work with

$$
T(I) = \text{ runtime on input } I
$$
\n
$$
T(n) = \max_{I \text{ of size } n} T(I)
$$
\n
$$
T_{\text{avg}}(n) = \frac{\sum_{I \text{ of size } n} T(I)}{\text{number of inputs of size } I}
$$
\n
$$
T_{\text{avg}}(n) = \frac{\sum_{I \text{ of size } n} T(I)}{\sum_{I \text{ over } n} T(I)}
$$
\n
$$
T_{\text{avg}}(n) = \frac{\sum_{I \text{ over } n} T(I)}{\sum_{I \text{ over } n} T(I)}
$$

Remark: we will sometimes use more than one parameter

- numbers of rows and columns in a matrix
- vertices and edges in a graph

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

big-O.

1. we say that $f(n) \in O(g(n))$ if there exist $C > 0$ and n_0 , such that for $n \ge n_0$, $f(n) \le Cg(n)$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

big-Ω**.**

- **1.** we say that $f(n) \in \Omega(g(n))$ if there exist $C > 0$ and n_0 such that for $n \geq n_0$, $f(n) \geq Cg(n)$
- **2.** equivalent to $q(n) \in O(f(n))$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

Θ**.**

- **1.** we say that $f(n) \in \Theta(g(n))$ if there exist $C, C' > 0$ and n_0 such that for $n \geq n_0$, $C'g(n) \leq f(n) \leq Cg(n)$
- **2.** equivalent to $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.
- **3.** in particular true if $\lim_{n \to \infty} f(n)/g(n) = C$ for some $0 < C < \infty$

 $9/25$

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

little-o.

- **1.** we say that $f(n) \in o(g(n))$ if for all $C > 0$, there exists n_0 such that for $n \ge n_0$, $f(n) \le Cg(n)$
- **2.** equivalent to $\lim_{n\to\infty} f(n)/g(n) = 0$.

Consider two functions $f(n)$, $g(n)$ with values in $\mathbb{R}_{>0}$

little-*ω***.**

- **1.** we say that $f(n) \in \omega(g(n))$ if for all $C > 0$, there exists n_0 such that for $n \geq n_0$, $f(n) > Cg(n)$
- **2.** equivalent to $\lim_{n\to\infty} f(n)/g(n) = \infty$
- **3.** equivalent to $g(n) \in o(f(n))$.

Examples

• $n^k + c_{k-1}n^{k-1} + \cdots + c_0$ is in $\Theta(n^k)$

) *cⁱ* and *k* constant!

- \bullet $n^{O(1)}$ means (at most) polynomial in n
- $n \log(n)$ is in $O(n^2)$ and $\Omega(n)$

True/False 2^{n-1} is in $\Theta(2^n)$?

<https://padlet.com/arminjamshidpey/CS341>

True/False

 $(n − 1)!$ ∈ $\Theta(n!)$?

<https://padlet.com/arminjamshidpey/CS341>

Definitions for several parameters

Definitions for several parameters

Consider two functions $f(n, m)$, $g(n, m)$ with values in $\mathbb{R}_{>0}$

f(*n, m*) is in $O(g(n, m))$ if there exist C, n_0, m_0 such that $f(n, m) \leq Cg(n, m)$ for $n > n_0$ or $m > m_0$

Remark:

- less strict definition: there exist C, n_0, m_0 such that $f(n, m) \leq C g(n, m)$ for $n \geq n_0$ **and** $m > m_0$
- will not matter too much which one we choose

Rough definition:

- memory locations contain integer words of *b* **bits** each
- assume $b > log(n)$ for input size *n*
- Random Access Memory: can access any memory location at unit cost
- basic operations on words have unit costs

Rough definition:

- memory locations contain integer words of *b* **bits** each
- assume $b > log(n)$ for input size *n*
- Random Access Memory: can access any memory location at unit cost
- basic operations on words have unit costs

Sum(*A*[1*..n*]) 1. $s \leftarrow 0$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s + A[i]$

Padlet

If all entries of *A* fit in a word, the cost is ...

<https://padlet.com/arminjamshidpey/CS341>

Product(*A*[1*..n*]) 1. $s \leftarrow 1$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s \times A[i]$

Padlet

All entries of *A* fit in a word. Does it have the same runtime as the Sum algorithm (on the previous slide)?

<https://padlet.com/arminjamshidpey/CS341>

Product(*A*[1*..n*]) 1. $s \leftarrow 1$ 2. **for** $i = 1, ..., n$ 3. $s \leftarrow s \times A[i]$

Padlet

All entries of *A* fit in a word. Does it have the same runtime as the Sum algorithm (on the previous slide)? <https://padlet.com/arminjamshidpey/CS341>

More examples

- matrix multiplication algorithms (with word-size inputs) are OK
- other matrix algorithms (Gaussian elimination) need more care
- (weighted) graph algorithms (weights fit in a word) are usually OK

Practical relevance?

- **1. big-O is only an upper bound**
	- typical example: 1 is in $O(n^2)$ and *n* is in $O(n)$, but ...
	- try to give Θ 's if possible
- **2. big-anything hides constants**
	- this is by design
	- a $\Theta(n^2)$ will beat a $\Theta(n^3)$ algorithm **eventually**
	- **galactic algorithms**: become practically relevant for astronomical input sizes (fast matrix or integer multiplication)
- **3. we use a simplified model**
	- artificial computational model
	- focus on "operations", forget memory requirements, data locality, . . .

Case study: maximum subarray

Task

Given an array $A[1..n]$, find a contiguous subarray $A[i..j]$ that maximizes the sum $A[i] + \cdots + \overline{A[j]}$.

Example. Given

$$
A = [10, -5, 4, 3, -5, 6, -1, -1]
$$

the subarray

$$
A[1..6] = [10, -5, 4, 3, -5, 6]
$$

has sum $10 + \cdots + 6 = 13$. It is the best we can do.

Convention. We can take $j = i - 1$, so $A[i..j]$ is empty, and the sum is zero.

Note: To make things simpler, here we just try to find the maximum sum and not the array.

Brute force algorithm

```
Test2(A)
1. \max \leftarrow 0<br>2. for i \leftarrow 12. for i \leftarrow 1 to n do<br>3. for i \leftarrow i to n
              for j \leftarrow i to n do
4. \text{sum} \leftarrow 0<br>5. \text{for } k \leftarrow ifor k \leftarrow i to j do
6. \text{sum} \leftarrow A[k]7. return max
```
Brute force algorithm

BruteForce(*A*) 1. $opt \leftarrow 0$ 2. **for** $i \leftarrow 1$ **to** *n* **do** 3. **for** $j \leftarrow i$ **to** *n* **do** 4. $\text{sum} \leftarrow 0$ 5. **for** $k \leftarrow i$ **to** *j* **do** 6. $\text{sum} \leftarrow \text{sum} + A[k]$ 7. **if** sum $>$ opt 8. opt \leftarrow sum 9. **return** opt

Brute force algorithm

BruteForce(*A*) 1. $opt \leftarrow 0$ 2. **for** $i \leftarrow 1$ **to** *n* **do** 3. **for** $j \leftarrow i$ **to** *n* **do** 4. $\text{sum} \leftarrow 0$ 5. **for** $k \leftarrow i$ **to** *j* **do** 6. $\text{sum} \leftarrow \text{sum} + A[k]$ 7. **if** sum $>$ opt 8. opt \leftarrow sum 9. **return** opt

Runtime: Θ(*n* 3)

Improved brute force algorithm

Idea: we recompute the same sum many times in the *j* loop.

Improved brute force algorithm

Idea: we recompute the same sum many times in the *j* loop.

```
BetterBruteForce(A)
1. opt \leftarrow 02. for i \leftarrow 1 to n do<br>3. sum \leftarrow 0sum \leftarrow 04. for j \leftarrow i to n do
5. \text{sum} \leftarrow \text{sum} + A[j]6. if sum > opt
7. opt \leftarrow sum8. return opt
```
Runtime: Θ(*n* 2)

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2).

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ **and** $A[n/2+1]$

(cases mutually exclusive.)

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[j] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[j]$

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[i] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[i]$

more abstractly: $F(i, j) = f(i) + g(j)$, for *i* in $1, \ldots, n/2$ and *j* in $n/2 + 1, \ldots, n$

To maximize $F(i, j)$, maximize $f(i)$ and $g(j)$ independently.

Idea: solve the problem twice in size *n/*2 (we assume *n* is a power of 2). Then the optimal subarray (if not empty)

- **1.** is completely in the left half *A*[1*..n/*2]
- **2.** or is completely in the right half $A[n/2+1..n]$
- **3.** or contains **both** $A[n/2]$ and $A[n/2+1]$

(cases mutually exclusive.)

To find the optimal subarray in case **3**, write

 $A[i] + \cdots + A[i] = A[i] + \cdots + A[n/2] + A[n/2 + 1] + \cdots + A[i]$

more abstractly: $F(i, j) = f(i) + g(j)$, for *i* in $1, \ldots, n/2$ and *j* in $n/2 + 1, \ldots, n$

To maximize $F(i, j)$, maximize $f(i)$ and $g(j)$ independently.

Maximizing half-sums

MaximizeLowerHalf(*A*) 1. opt \leftarrow *A*[*n*/2] 2. $\text{sum} \leftarrow A[n/2]$ 3. **for** $i = n/2 - 1, ..., 1$ **do** 4. $\text{sum} \leftarrow \text{sum} + A[i]$ 5. **if** sum *>* opt 6. opt \leftarrow sum 7. **return** opt

Runtime: Θ(*n*)

Maximizing half-sums

MaximizeLowerHalf(*A*) 1. $\qquad \text{opt} \leftarrow A[n/2]$ 2. $\text{sum} \leftarrow A[n/2]$ 3. **for** $i = n/2 - 1, ..., 1$ **do** 4. $\text{sum} \leftarrow \text{sum} + A[i]$ 5. **if** sum $>$ opt 6. opt \leftarrow sum 7. **return** opt

Runtime: Θ(*n*)

```
MaximizeUpperHalf(A)
1. . . .
```
Runtime: Θ(*n*)

Main algorithm

DivideAndConquer(*A*[1*..n*])

- 1. **if** $n = 1$ **return** $max(A[1], 0)$
- 2. opt_{lo} ← DivideAndConquer($A[1..n/2]$)
3. opt_{bi} ← DivideAndConquer($A[n/2+1]$
- 3. opt_{hi} ← DivideAndConquer $(A[n/2+1..n])$
4. opt_{middle} ← MaximizeLowerHalf (A) + Max
- 4. opt_{middle} ← MaximizeLowerHalf(*A*) + MaximizeUpperHalf(*A*)
5. return max(opt_{ra}, opt_{middle})
- $\textbf{return } \max(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Main algorithm

DivideAndConquer(*A*[1*..n*]) if $n = 1$ return $max(A[1], 0)$ 2. opt_{lo} ← DivideAndConquer $(A[1..n/2])$ 3. $\qquad \text{opt}_{\text{hi}} \leftarrow \text{DivideAndConquer}(A[n/2+1..n])$ $4.$ opt_{middle} ← MaximizeLowerHalf (A) + MaximizeUpperHalf (A) $\textbf{return } \max(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Proof: same as MergeSort. Details in next module.

Idea: solve the problem in subarrays $A[1..j]$ of sizes $1, \ldots, n$.

Idea: solve the problem in subarrays $A[1,j]$ of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of $A[1..n-1]$,
- **2.** or contains $A[n]$
- (cases mutually exclusive!)

Idea: solve the problem in subarrays $A[1,j]$ of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of $A[1..n-1]$,
- **2.** or contains *A*[*n*]

(cases mutually exclusive!)

Translation: write $M(j) = \max$ sum for subarrays of $A[1..j]$. Then

$$
M(n) = \max(M(n-1), \overline{M}(n))
$$

with $\overline{M}(j) = \text{max}$ sum for subarrays of $A[1..j]$, that include j.

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains *A*[*n*]

- 1. is of the form $A[i..n-1,n]$, for some $i \leq n-1$
- **2.** or is exactly $[A[n]]$

(cases mutually exclusive)

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains *A*[*n*]

- 1. is of the form $A[i..n-1,n]$, for some $i \leq n-1$
- **2.** or is exactly $[A[n]]$

(cases mutually exclusive)

Translation:
$$
\overline{M}(n) = \max(\overline{M}(n-1) + A[n], A[n]) = A[n] + \max(\overline{M}(n-1), 0)
$$

Can eliminate recursive calls, and write as a loop.

Main algorithm

DynamicProgramming(*A*) 1. $\overline{M} \leftarrow A[1]$ 2. $M \leftarrow \max(\overline{M}, 0)$ 3. **for** $i = 2, \ldots, n$ **do** 4. $M \leftarrow A[i] + \max(M, 0)$ 5. $M \leftarrow \max(M, M)$ 6. **return** *M*

Runtime: Θ(*n*)