
CS 341: Algorithms
Lecture 1: Course Introduction

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost and many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

1 / 25

Staff

Instructors
• Armin Jampshidpey
• Mark Petrick
• Collin Roberts

ISC
• Sylvie Davies (sldavies)

2 / 25

Electronic communication

Course webpage:
• Course Outline
• Lecture Slides

Piazza
• Make sure you are signed up using your UWaterloo email address
• http://piazza.com/uwaterloo.ca/winter2025/cs341
• posting solutions to assignments is forbidden

email
• use your uwaterloo address

3 / 25

http://piazza.com/uwaterloo.ca/winter2025/cs341

Assignments, exams, project, etc
• 5 assignments (20%)

• 2 programming questions (4%)

• Midterm (30%)
• Monday, Feb 24, 7:00-8:50pm.

• Final (46%)
• TBA

In order to pass the course, you must:
• earn half of the written assignment points and
• earn half of the exam points.

If you don’t meet the above requirement, your final mark will be the smaller of the normal
calculation and a mark of 46.

4 / 25

References

• Slides
• posted before the lecture (expectedly)

• Textbooks
• Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein [CLRS]
• Algorithm Design, Kleinberg, Tardos [KT]
• Algorithms, Dasgupta, Papadimitriou, Vazirani [DPV]

5 / 25

This course

What you should know
• CS240-level data strucures and algorithms
• big-O notation
• maybe a bit of math (matrices, for instance)

What we will do
• a lot of algorithms
• pseudo-code
• proofs for correctness and runtime

What we will not do
• read/write code in class

6 / 25

Tentative syllabus

• divide-and-conquer, master theorem
• breadth-first and depth-first search
• greedy algorithms
• dynamic programming
• NP-completeness

7 / 25

Cost of algorithms
Inputs
• parameterized by an integer n, called the size
• e.g., length of an array that we want to work with

T (I) = runtime on input I runtime of a particular instance

T (n) = maxI of size n T (I) worst-case runtime

Tavg(n) =
∑

I of size n
T (I)

number of inputs of size I average runtime, not used much in this course

Remark: we will sometimes use more than one parameter
• numbers of rows and columns in a matrix
• vertices and edges in a graph

8 / 25

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

big-O.

1. we say that f(n) ∈ O(g(n)) if
there exist C > 0 and n0, such that for n ≥ n0, f(n) ≤ Cg(n)

2g(n)

f(n)

g(n)

n

9 / 25

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

big-Ω.

1. we say that f(n) ∈ Ω(g(n)) if
there exist C > 0 and n0 such that for n ≥ n0, f(n) ≥ Cg(n)

2. equivalent to g(n) ∈ O(f(n))

1
2g(n)

f(n)

g(n)

n 9 / 25

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

Θ.

1. we say that f(n) ∈ Θ(g(n)) if there exist C, C ′ > 0 and n0 such that for n ≥ n0,
C ′g(n) ≤ f(n) ≤ Cg(n)

2. equivalent to f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

3. in particular true if lim∞ f(n)/g(n) = C for some 0 < C <∞

1
2g(n)

f(n)

g(n)

n

2g(n)

9 / 25

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

little-o.

1. we say that f(n) ∈ o(g(n)) if
for all C > 0, there exists n0 such that for n ≥ n0, f(n) ≤ Cg(n)

2. equivalent to limn→∞ f(n)/g(n) = 0.

n

f(n)

g(n) 1
2g(n)

1
4g(n)

9 / 25

Asymptotic notation
Consider two functions f(n), g(n) with values in R>0

little-ω.

1. we say that f(n) ∈ ω(g(n)) if
for all C > 0, there exists n0 such that for n ≥ n0, f(n) > Cg(n)

2. equivalent to limn→∞ f(n)/g(n) =∞
3. equivalent to g(n) ∈ o(f(n)).

f(n)

n

g(n)

2g(n)

3g(n)

9 / 25

Examples
• nk + ck−1nk−1 + · · ·+ c0 is in Θ(nk) ci and k constant!

• nO(1) means (at most) polynomial in n

• n log(n) is in O(n2) and Ω(n)

True/False
2n−1 is in Θ(2n)?

https://padlet.com/arminjamshidpey/CS341

True/False
(n− 1)! ∈ Θ(n!)?

https://padlet.com/arminjamshidpey/CS341

10 / 25

https://padlet.com/arminjamshidpey/CS341
https://padlet.com/arminjamshidpey/CS341

Definitions for several parameters

11 / 25

Definitions for several parameters

Consider two functions f(n, m), g(n, m) with values in R>0

f(n, m) is in O(g(n, m)) if there exist C, n0, m0 such that f(n, m) ≤ Cg(n, m) for
n ≥ n0 or m ≥ m0

Remark:
• less strict definition: there exist C, n0, m0 such that f(n, m) ≤ Cg(n, m) for n ≥ n0

and m ≥ m0

• will not matter too much which one we choose

12 / 25

Computational model: word RAM
Rough definition:
• memory locations contain integer words of b bits each
• assume b ≥ log(n) for input size n

• Random Access Memory: can access any memory location at unit cost
• basic operations on words have unit costs

Sum(A[1..n])
1. s← 0
2. for i = 1, . . . , n
3. s← s + A[i]

Padlet
If all entries of A fit in a word, the cost is ...
https://padlet.com/arminjamshidpey/CS341

13 / 25

https://padlet.com/arminjamshidpey/CS341

Computational model: word RAM
Rough definition:
• memory locations contain integer words of b bits each
• assume b ≥ log(n) for input size n

• Random Access Memory: can access any memory location at unit cost
• basic operations on words have unit costs

Sum(A[1..n])
1. s← 0
2. for i = 1, . . . , n
3. s← s + A[i]

Padlet
If all entries of A fit in a word, the cost is ...
https://padlet.com/arminjamshidpey/CS341

13 / 25

https://padlet.com/arminjamshidpey/CS341

Computational model: word RAM
Product(A[1..n])
1. s← 1
2. for i = 1, . . . , n
3. s← s×A[i]

Padlet
All entries of A fit in a word. Does it have the same runtime as the Sum algorithm (on the
previous slide)?
https://padlet.com/arminjamshidpey/CS341

More examples
• matrix multiplication algorithms (with word-size inputs) are OK
• other matrix algorithms (Gaussian elimination) need more care
• (weighted) graph algorithms (weights fit in a word) are usually OK

14 / 25

https://padlet.com/arminjamshidpey/CS341

Computational model: word RAM
Product(A[1..n])
1. s← 1
2. for i = 1, . . . , n
3. s← s×A[i]

Padlet
All entries of A fit in a word. Does it have the same runtime as the Sum algorithm (on the
previous slide)?
https://padlet.com/arminjamshidpey/CS341

More examples
• matrix multiplication algorithms (with word-size inputs) are OK
• other matrix algorithms (Gaussian elimination) need more care
• (weighted) graph algorithms (weights fit in a word) are usually OK

14 / 25

https://padlet.com/arminjamshidpey/CS341

Practical relevance?
1. big-O is only an upper bound
• typical example: 1 is in O(n2) and n is in O(n), but . . .
• try to give Θ’s if possible

2. big-anything hides constants
• this is by design
• a Θ(n2) will beat a Θ(n3) algorithm eventually
• galactic algorithms: become practically relevant for astronomical input sizes

(fast matrix or integer multiplication)

3. we use a simplified model
• artificial computational model
• focus on “operations”, forget memory requirements, data locality, . . .

15 / 25

Case study: maximum subarray

Task

Given an array A[1..n], find a contiguous subarray A[i..j] that maximizes the sum
A[i] + · · ·+ A[j].

Example. Given
A = [10,−5, 4, 3,−5, 6,−1,−1]

the subarray
A[1..6] = [10,−5, 4, 3,−5, 6]

has sum 10 + · · ·+ 6 = 13. It is the best we can do.

Convention. We can take j = i− 1, so A[i..j] is empty, and the sum is zero.

Note: To make things simpler, here we just try to find the maximum sum and not the
array.

16 / 25

Brute force algorithm

Test2(A)
1. max← 0
2. for i← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← A[k]
7. return max

17 / 25

Brute force algorithm
BruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← sum + A[k]
7. if sum > opt
8. opt← sum
9. return opt

Runtime: Θ(n3)

18 / 25

Brute force algorithm
BruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. for j ← i to n do
4. sum← 0
5. for k ← i to j do
6. sum← sum + A[k]
7. if sum > opt
8. opt← sum
9. return opt

Runtime: Θ(n3)

18 / 25

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

BetterBruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. sum← 0
4. for j ← i to n do
5. sum← sum + A[j]
6. if sum > opt
7. opt← sum
8. return opt

19 / 25

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

BetterBruteForce(A)
1. opt← 0
2. for i← 1 to n do
3. sum← 0
4. for j ← i to n do
5. sum← sum + A[j]
6. if sum > opt
7. opt← sum
8. return opt

Runtime: Θ(n2)

19 / 25

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2).

Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

20 / 25

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

20 / 25

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

20 / 25

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

20 / 25

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

A[i] + · · ·+ A[j] = A[i] + · · ·+ A[n/2] + A[n/2 + 1] + · · ·+ A[j]

more abstractly: F (i, j) = f(i) + g(j), for i in 1, . . . , n/2 and j in n/2 + 1, . . . , n

To maximize F (i, j), maximize f(i) and g(j) independently.

20 / 25

Maximizing half-sums
MaximizeLowerHalf(A)
1. opt← A[n/2]
2. sum← A[n/2]
3. for i = n/2− 1, . . . , 1 do
4. sum← sum + A[i]
5. if sum > opt
6. opt← sum
7. return opt

Runtime: Θ(n)

MaximizeUpperHalf(A)
1. . . .

Runtime: Θ(n)

21 / 25

Maximizing half-sums
MaximizeLowerHalf(A)
1. opt← A[n/2]
2. sum← A[n/2]
3. for i = n/2− 1, . . . , 1 do
4. sum← sum + A[i]
5. if sum > opt
6. opt← sum
7. return opt

Runtime: Θ(n)

MaximizeUpperHalf(A)
1. . . .

Runtime: Θ(n)
21 / 25

Main algorithm

DivideAndConquer(A[1..n])
1. if n = 1 return max(A[1], 0)
2. optlo ← DivideAndConquer(A[1..n/2])
3. opthi ← DivideAndConquer(A[n/2 + 1..n])
4. optmiddle ← MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
5. return max(optlo, opthi, optmiddle)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))

Proof: same as MergeSort. Details in next module.

22 / 25

Main algorithm

DivideAndConquer(A[1..n])
1. if n = 1 return max(A[1], 0)
2. optlo ← DivideAndConquer(A[1..n/2])
3. opthi ← DivideAndConquer(A[n/2 + 1..n])
4. optmiddle ← MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
5. return max(optlo, opthi, optmiddle)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))

Proof: same as MergeSort. Details in next module.

22 / 25

Dynamic programming

Idea: solve the problem in subarrays A[1..j] of sizes 1, . . . , n.

The optimal subarray
1. is either a subarray of A[1..n− 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M(j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n− 1), M(n))

with M(j) = max sum for subarrays of A[1..j], that include j.

23 / 25

Dynamic programming

Idea: solve the problem in subarrays A[1..j] of sizes 1, . . . , n. The optimal subarray
1. is either a subarray of A[1..n− 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M(j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n− 1), M(n))

with M(j) = max sum for subarrays of A[1..j], that include j.

23 / 25

Dynamic programming

Idea: solve the problem in subarrays A[1..j] of sizes 1, . . . , n. The optimal subarray
1. is either a subarray of A[1..n− 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M(j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n− 1), M(n))

with M(j) = max sum for subarrays of A[1..j], that include j.

23 / 25

Dynamic programming
How can we compute M(1), . . . , M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n− 1, n], for some i ≤ n− 1
2. or is exactly [A[n]]

(cases mutually exclusive)

Translation: M(n) = max(M(n− 1) + A[n], A[n]) = A[n] + max(M(n− 1), 0)

Can eliminate recursive calls, and write as a loop.

1. M ← A[1]
2. for i = 2, . . . , n do
3. M ← A[i] + max(M, 0)

24 / 25

Dynamic programming
How can we compute M(1), . . . , M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n− 1, n], for some i ≤ n− 1
2. or is exactly [A[n]]

(cases mutually exclusive)

Translation: M(n) = max(M(n− 1) + A[n], A[n]) = A[n] + max(M(n− 1), 0)

Can eliminate recursive calls, and write as a loop.

1. M ← A[1]
2. for i = 2, . . . , n do
3. M ← A[i] + max(M, 0)

24 / 25

Main algorithm

DynamicProgramming(A)
1. M ← A[1]
2. M ← max(M, 0)
3. for i = 2, . . . , n do
4. M ← A[i] + max(M, 0)
5. M ← max(M, M)
6. return M

Runtime: Θ(n)

25 / 25

