CS 341: Algorithms Lecture 1: Course Introduction

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost and many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Staff

Instructors

- Armin Jampshidpey
- Mark Petrick
- Collin Roberts

ISC

• Sylvie Davies (sldavies)

Electronic communication

Course webpage:

- Course Outline
- Lecture Slides

Piazza

- Make sure you are signed up using your UWaterloo email address
- http://piazza.com/uwaterloo.ca/winter2025/cs341
- posting solutions to assignments is forbidden

email

• use your uwaterloo address

Assignments, exams, project, etc

- 5 assignments (20%)
- 2 programming questions (4%)
- Midterm (30%)
 - Monday, Feb 24, 7:00-8:50pm.
- Final (46%)
 - TBA

In order to pass the course, you **must**:

- earn half of the written assignment points and
- earn half of the exam points.

If you don't meet the above requirement, your final mark will be the smaller of the normal calculation and a mark of 46.

References

- Slides
 - posted before the lecture (expectedly)
- Textbooks
 - \bullet Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein $\left[\mathrm{CLRS}\right]$
 - Algorithm Design, Kleinberg, Tardos [KT]
 - Algorithms, Dasgupta, Papadimitriou, Vazirani [DPV]

This course

What you should know

- CS240-level data strucures and algorithms
- big-O notation
- maybe a bit of math (matrices, for instance)

What we will do

- a lot of algorithms
- pseudo-code
- proofs for correctness and runtime

What we will not do

• read/write code in class

Tentative syllabus

- divide-and-conquer, master theorem
- breadth-first and depth-first search
- greedy algorithms
- dynamic programming
- NP-completeness

Cost of algorithms

Inputs

- parameterized by an integer n, called the size
- e.g., length of an array that we want to work with

$$T(I)$$
 = runtime on input I runtime of a particular instance $T(n)$ = max I of size n $T(I)$ worst-case runtime $T_{avg}(n) = \frac{\sum_{I \text{ of size } n} T(I)}{\text{number of inputs of size } I}$ average runtime, not used much in this course

Remark: we will sometimes use more than one parameter

- numbers of rows and columns in a matrix
- vertices and edges in a graph

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

big-O.

1. we say that $f(n) \in O(g(n))$ if there exist C > 0 and n_0 , such that for $n \ge n_0$, $f(n) \le Cg(n)$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

$\mathbf{big}\text{-}\Omega\textbf{.}$

- 1. we say that $f(n) \in \Omega(g(n))$ if there exist C > 0 and n_0 such that for $n \ge n_0$, $f(n) \ge Cg(n)$
- **2.** equivalent to $g(n) \in O(f(n))$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

Θ.

- 1. we say that $f(n) \in \Theta(g(n))$ if there exist C, C' > 0 and n_0 such that for $n \ge n_0$, $C'g(n) \le f(n) \le Cg(n)$
- **2.** equivalent to $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.
- **3.** in particular true if $\lim_{\infty} f(n)/g(n) = C$ for some $0 < C < \infty$

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

little-o.

1. we say that $f(n) \in o(g(n))$ if for all C > 0, there exists n_0 such that for $n \ge n_0$, $f(n) \le Cg(n)$

2. equivalent to $\lim_{n\to\infty} f(n)/g(n) = 0$.

Consider two functions f(n), g(n) with values in $\mathbb{R}_{>0}$

little- ω .

- 1. we say that $f(n) \in \omega(g(n))$ if for all C > 0, there exists n_0 such that for $n \ge n_0$, f(n) > Cg(n)
- **2.** equivalent to $\lim_{n\to\infty} f(n)/g(n) = \infty$
- **3.** equivalent to $g(n) \in o(f(n))$.

Examples

• $n^k + c_{k-1}n^{k-1} + \dots + c_0$ is in $\Theta(n^k)$

 c_i and k constant!

- $n^{O(1)}$ means (at most) polynomial in n
- $n\log(n)$ is in $O(n^2)$ and $\Omega(n)$

True/False 2^{n-1} is in $\Theta(2^n)$?

https://padlet.com/arminjamshidpey/CS341

True/False

 $(n-1)!\in \Theta(n!)?$

https://padlet.com/arminjamshidpey/CS341

Definitions for several parameters

Definitions for several parameters

Consider two functions f(n,m), g(n,m) with values in $\mathbb{R}_{>0}$

f(n,m) is in O(g(n,m)) if there exist C,n_0,m_0 such that $f(n,m) \leq Cg(n,m)$ for $n \geq n_0$ or $m \geq m_0$

Remark:

- less strict definition: there exist C, n_0, m_0 such that $f(n, m) \leq Cg(n, m)$ for $n \geq n_0$ and $m \geq m_0$
- will not matter too much which one we choose

Rough definition:

- memory locations contain integer words of \boldsymbol{b} bits each
- assume $b \ge \log(n)$ for input size n
- Random Access Memory: can access any memory location at unit cost
- basic operations on words have unit costs

Rough definition:

- memory locations contain integer words of \boldsymbol{b} bits each
- assume $b \ge \log(n)$ for input size n
- Random Access Memory: can access any memory location at unit cost
- basic operations on words have unit costs

 $\begin{aligned} & \textbf{Sum}(A[1..n]) \\ & 1. \quad s \leftarrow 0 \\ & 2. \quad \textbf{for } i = 1, \dots, n \\ & 3. \quad s \leftarrow s + A[i] \end{aligned}$

Padlet

If all entries of A fit in a word, the cost is ... https://padlet.com/arminjamshidpey/CS341

 $\begin{aligned} & \textbf{Product}(A[1..n]) \\ & 1. \quad s \leftarrow 1 \\ & 2. \quad \textbf{for } i = 1, \dots, n \\ & 3. \quad s \leftarrow s \times A[i] \end{aligned}$

$3. \qquad s \leftarrow s \times A[i$

Padlet

All entries of A fit in a word. Does it have the same runtime as the Sum algorithm (on the previous slide)? https://padlet.com/arminjamshidpey/CS341

Product(A[1..n])1. $s \leftarrow 1$ 2. for $i = 1, \dots, n$ 3. $s \leftarrow s \times A[i]$

Padlet

All entries of A fit in a word. Does it have the same runtime as the Sum algorithm (on the previous slide)? https://padlet.com/arminjamshidpey/CS341

More examples

- matrix multiplication algorithms (with word-size inputs) are OK
- other matrix algorithms (Gaussian elimination) need more care
- (weighted) graph algorithms (weights fit in a word) are usually OK

Practical relevance?

- 1. big-O is only an upper bound
 - typical example: 1 is in $O(n^2)$ and n is in O(n), but ...
 - try to give Θ 's if possible
- 2. big-anything hides constants
 - this is by design
 - a $\Theta(n^2)$ will be at a $\Theta(n^3)$ algorithm eventually
 - **galactic algorithms**: become practically relevant for astronomical input sizes (fast matrix or integer multiplication)
- 3. we use a simplified model
 - artificial computational model
 - focus on "operations", forget memory requirements, data locality, \ldots

Case study: maximum subarray

Task

Given an array A[1..n], find a contiguous subarray A[i..j] that maximizes the sum $A[i] + \cdots + A[j]$.

Example. Given

$$A = [10, -5, 4, 3, -5, 6, -1, -1]$$

the subarray

$$A[1..6] = [10, -5, 4, 3, -5, 6]$$

has sum $10 + \cdots + 6 = 13$. It is the best we can do.

Convention. We can take j = i - 1, so A[i..j] is empty, and the sum is zero.

Note: To make things simpler, here we just try to find the maximum sum and not the array.

Brute force algorithm

```
Test2(A)1.\max \leftarrow 02.for i \leftarrow 1 to n do3.for j \leftarrow i to n do4.sum \leftarrow 05.for k \leftarrow i to j do6.sum \leftarrow A[k]7.return max
```

Brute force algorithm

BruteForce(A) $opt \leftarrow 0$ 1. for $i \leftarrow 1$ to n do 2.for $j \leftarrow i$ to n do 3. $\operatorname{sum} \leftarrow 0$ 4. 5.for $k \leftarrow i$ to j do $\operatorname{sum} \leftarrow \operatorname{sum} + A[k]$ 6. 7. if sum > opt 8. $opt \leftarrow sum$ return opt 9.

Brute force algorithm

BruteForce(A) $opt \leftarrow 0$ 1. 2.for $i \leftarrow 1$ to n do for $j \leftarrow i$ to n do 3. $\operatorname{sum} \leftarrow 0$ 4. 5.for $k \leftarrow i$ to j do $\operatorname{sum} \leftarrow \operatorname{sum} + A[k]$ 6. 7. if sum > opt 8. $opt \leftarrow sum$ return opt 9.

Runtime: $\Theta(n^3)$

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

```
BetterBruteForce(A)
           opt \leftarrow 0
1.
     for i \leftarrow 1 to n do
2.
3.
     \mathrm{sum} \leftarrow 0
    \begin{aligned} \mathbf{for} \ j \leftarrow i \ \mathbf{to} \ n \ \mathbf{do} \\ \mathrm{sum} \leftarrow \mathrm{sum} + A[j] \end{aligned} 
4.
5.
       if sum > opt
6.
7.
                                   opt \leftarrow sum
8.
           return opt
```

Runtime: $\Theta(n^2)$

Idea: solve the problem twice in size n/2 (we assume n is a power of 2).

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- 3. or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- **3.** or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2+1] + \dots + A[j]$$

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- 3. or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2 + 1] + \dots + A[j]$$

more abstractly: F(i, j) = f(i) + g(j), for i in $1, \ldots, n/2$ and j in $n/2 + 1, \ldots, n$ To maximize F(i, j), maximize f(i) and g(j) independently.

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal subarray (if not empty)

- 1. is completely in the left half A[1..n/2]
- **2.** or is completely in the right half A[n/2 + 1..n]
- 3. or contains both A[n/2] and A[n/2+1]

(cases mutually exclusive.)

To find the optimal subarray in case $\mathbf{3}$, write

$$A[i] + \dots + A[j] = A[i] + \dots + A[n/2] + A[n/2 + 1] + \dots + A[j]$$

more abstractly: F(i, j) = f(i) + g(j), for i in $1, \ldots, n/2$ and j in $n/2 + 1, \ldots, n$ To maximize F(i, j), maximize f(i) and g(j) independently.

Maximizing half-sums

MaximizeLowerHalf (A)1. $opt \leftarrow A[n/2]$ 2. $sum \leftarrow A[n/2]$ 3. for $i = n/2 - 1, \dots, 1$ do4. $sum \leftarrow sum + A[i]$ 5. if sum > opt6. $opt \leftarrow sum$ 7. return opt

Runtime: $\Theta(n)$

Maximizing half-sums

MaximizeLowerHalf (A)1. opt $\leftarrow A[n/2]$ 2. sum $\leftarrow A[n/2]$ 3. for $i = n/2 - 1, \dots, 1$ do4. sum \leftarrow sum + A[i]5. if sum > opt6. opt \leftarrow sum7. return opt

Runtime: $\Theta(n)$

MaximizeUpperHalf(*A*) 1. . . .

Runtime: $\Theta(n)$

Main algorithm

DivideAndConquer(A[1..n])

- 1. **if** n = 1 **return** $\max(A[1], 0)$
- 2. $opt_{lo} \leftarrow \mathsf{DivideAndConquer}(A[1..n/2])$
- 3. $opt_{hi} \leftarrow DivideAndConquer(A[n/2 + 1..n])$
- 4. $opt_{middle} \leftarrow MaximizeLowerHalf(A) + MaximizeUpperHalf(A)$
- 5. **return** $\max(\text{opt}_{\text{lo}}, \text{opt}_{\text{hi}}, \text{opt}_{\text{middle}})$

Main algorithm

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Proof: same as MergeSort. Details in next module.

Idea: solve the problem in subarrays A[1..j] of sizes $1, \ldots, n$.

Idea: solve the problem in subarrays A[1..j] of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of A[1..n-1],
- **2.** or contains A[n]

(cases mutually exclusive!)

Idea: solve the problem in subarrays A[1..j] of sizes $1, \ldots, n$. The optimal subarray

- 1. is either a subarray of A[1..n-1],
- **2.** or contains A[n]
- (cases mutually exclusive!)

Translation: write $M(j) = \max$ sum for subarrays of A[1..j]. Then

$$M(n) = \max(M(n-1), \overline{M}(n))$$

with $\overline{M}(j) = \max$ sum for subarrays of A[1..j], that include j.

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains A[n]

- **1.** is of the form A[i..n-1,n], for some $i \leq n-1$
- **2.** or is exactly [A[n]]

(cases mutually exclusive)

How can we compute $\overline{M}(1), \ldots, \overline{M}(n)$?

Idea. As before: the optimal subarray that contains A[n]

- **1.** is of the form A[i..n-1,n], for some $i \leq n-1$
- **2.** or is exactly [A[n]]

(cases mutually exclusive)

Translation:
$$\overline{M}(n) = \max(\overline{M}(n-1) + A[n], A[n]) = A[n] + \max(\overline{M}(n-1), 0)$$

Can eliminate recursive calls, and write as a loop.

1.
$$\overline{M} \leftarrow A[1]$$

2. **for** $i = 2, ..., n$ **do**
3. $\overline{M} \leftarrow A[i] + \max(\overline{M}, 0)$

Main algorithm

Runtime: $\Theta(n)$