
CS 341: Algorithms
Lecture 2: Solving Recurrences

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost and many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 1 / 13

Design Idea for MergeSort

Input: Array A of n integers

Step 1: We split A into two subarrays: AL consists of the
first ⌈n2⌉ elements in A and AR consists of the last ⌊n2⌋
elements in A.

Step 2: Recursively run MergeSort on AL and AR .

Step 3: After AL and AR have been sorted, use a function
Merge to merge them into a single sorted array.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 2 / 13

Recurrence Relations

The mergesort recurrence is

T (n) =

{
T
(
⌈n2⌉

)
+ T

(
⌊n2⌋

)
+Θ(n) if n > 1

Θ(1) if n = 1.

It is simpler to consider the following exact recurrence, with
constant factors c and d replacing Θ’s:

T (n) =

{
T
(
⌈n2⌉

)
+ T

(
⌊n2⌋

)
+ cn if n > 1

d if n = 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 3 / 13

Recurrence Relations

The mergesort recurrence is

T (n) =

{
T
(
⌈n2⌉

)
+ T

(
⌊n2⌋

)
+Θ(n) if n > 1

Θ(1) if n = 1.

It is simpler to consider the following exact recurrence, with
constant factors c and d replacing Θ’s:

T (n) =

{
T
(
⌈n2⌉

)
+ T

(
⌊n2⌋

)
+ cn if n > 1

d if n = 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 3 / 13

Recurrence Relations (cont.)

The following is the corresponding sloppy recurrence (it has floors
and ceilings removed):

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

The exact and sloppy recurrences are identical when n is a power
of 2.

We solve the sloppy recurrence when n = 2j using the recursion
tree method.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 4 / 13

Recurrence Relations (cont.)

The following is the corresponding sloppy recurrence (it has floors
and ceilings removed):

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

The exact and sloppy recurrences are identical when n is a power
of 2.

We solve the sloppy recurrence when n = 2j using the recursion
tree method.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 4 / 13

Recurrence Relations (cont.)

The following is the corresponding sloppy recurrence (it has floors
and ceilings removed):

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

The exact and sloppy recurrences are identical when n is a power
of 2.

We solve the sloppy recurrence when n = 2j using the recursion
tree method.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 4 / 13

Recursion Tree Method

We can construct a recursion tree for the sloppy recurrence,
assuming n = 2j , as follows.

1 Start with a one-node tree, say N, which receives the value
T (n).

2 Grow two children of N. These children, say N1 and N2,
receive the value T (n/2), and the value of N is updated to be
cn.

3 Repeat this process recursively, terminating when a node
receives the value T (1) = d .

4 Sum the values on each level of the tree, and then compute
the sum of all these sums; the result is T (n).

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 5 / 13

Recursion Tree Method

We can construct a recursion tree for the sloppy recurrence,
assuming n = 2j , as follows.

1 Start with a one-node tree, say N, which receives the value
T (n).

2 Grow two children of N. These children, say N1 and N2,
receive the value T (n/2), and the value of N is updated to be
cn.

3 Repeat this process recursively, terminating when a node
receives the value T (1) = d .

4 Sum the values on each level of the tree, and then compute
the sum of all these sums; the result is T (n).

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 5 / 13

Recursion Tree Method

We can construct a recursion tree for the sloppy recurrence,
assuming n = 2j , as follows.

1 Start with a one-node tree, say N, which receives the value
T (n).

2 Grow two children of N. These children, say N1 and N2,
receive the value T (n/2), and the value of N is updated to be
cn.

3 Repeat this process recursively, terminating when a node
receives the value T (1) = d .

4 Sum the values on each level of the tree, and then compute
the sum of all these sums; the result is T (n).

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 5 / 13

Recursion Tree Method

We can construct a recursion tree for the sloppy recurrence,
assuming n = 2j , as follows.

1 Start with a one-node tree, say N, which receives the value
T (n).

2 Grow two children of N. These children, say N1 and N2,
receive the value T (n/2), and the value of N is updated to be
cn.

3 Repeat this process recursively, terminating when a node
receives the value T (1) = d .

4 Sum the values on each level of the tree, and then compute
the sum of all these sums; the result is T (n).

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 5 / 13

Recursion Tree Method

We can construct a recursion tree for the sloppy recurrence,
assuming n = 2j , as follows.

1 Start with a one-node tree, say N, which receives the value
T (n).

2 Grow two children of N. These children, say N1 and N2,
receive the value T (n/2), and the value of N is updated to be
cn.

3 Repeat this process recursively, terminating when a node
receives the value T (1) = d .

4 Sum the values on each level of the tree, and then compute
the sum of all these sums; the result is T (n).

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 5 / 13

Solving the Exact Recurrence

The recursion tree method finds the solution of the exact
recurrence when n = 2j (it is in fact a proof for these values
of n).

If this solution is expressed as a function of n using
Θ-notation, then we obtain the complexity of the solution of
the exact recurrence for all n.

This is not a proof, however. If a real mathematical proof is
required, then it is necessary to use induction.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 6 / 13

Solving the Exact Recurrence

The recursion tree method finds the solution of the exact
recurrence when n = 2j (it is in fact a proof for these values
of n).

If this solution is expressed as a function of n using
Θ-notation, then we obtain the complexity of the solution of
the exact recurrence for all n.

This is not a proof, however. If a real mathematical proof is
required, then it is necessary to use induction.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 6 / 13

Solving the Exact Recurrence

The recursion tree method finds the solution of the exact
recurrence when n = 2j (it is in fact a proof for these values
of n).

If this solution is expressed as a function of n using
Θ-notation, then we obtain the complexity of the solution of
the exact recurrence for all n.

This is not a proof, however. If a real mathematical proof is
required, then it is necessary to use induction.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 6 / 13

The Master Method

The “Master Theorem” provides a formula for the solution of
many recurrence relations typically encountered in the analysis of
divide-and-conquer algorithms.

The following is a simplified version (a more general version can be
found in the textbook):

Theorem (Master theorem)

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T
(n
b

)
+Θ(ny)

in sloppy or exact form. Denote x = logb a. Then

T (n) ∈


Θ(nx) if y < x

Θ(ny log n) if y = x

Θ(ny) if y > x.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 7 / 13

The Master Method

The “Master Theorem” provides a formula for the solution of
many recurrence relations typically encountered in the analysis of
divide-and-conquer algorithms.

The following is a simplified version (a more general version can be
found in the textbook):

Theorem (Master theorem)

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T
(n
b

)
+Θ(ny)

in sloppy or exact form. Denote x = logb a. Then

T (n) ∈


Θ(nx) if y < x

Θ(ny log n) if y = x

Θ(ny) if y > x.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 7 / 13

The Master Method

The “Master Theorem” provides a formula for the solution of
many recurrence relations typically encountered in the analysis of
divide-and-conquer algorithms.

The following is a simplified version (a more general version can be
found in the textbook):

Theorem (Master theorem)

Suppose that a ≥ 1 and b > 1. Consider the recurrence

T (n) = a T
(n
b

)
+Θ(ny)

in sloppy or exact form. Denote x = logb a. Then

T (n) ∈


Θ(nx) if y < x

Θ(ny log n) if y = x

Θ(ny) if y > x.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 7 / 13

The Master Method
Suppose that n = bj , a ≥ 1, b ≥ 2 are integers and

T (n) = a T
(n
b

)
+ c ny , T (1) = d .

logb n

size n

size n
b

size n
b2

size n
bj

a branches

a a

a a

cny cny

ca(nb)
y

ca2(n
b2)

y

caj−1(n
bj−1)

y

daj

Total: daj + cny ∑j−1
i=0 (

a
by)

i

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 8 / 13

The Master Method
Suppose that n = bj , a ≥ 1, b ≥ 2 are integers and

T (n) = a T
(n
b

)
+ c ny , T (1) = d .

logb n

size n

size n
b

size n
b2

size n
bj

a branches

a a

a a

cny cny

ca(nb)
y

ca2(n
b2)

y

caj−1(n
bj−1)

y

daj

Total: daj + cny ∑j−1
i=0 (

a
by)

i

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 8 / 13

The Master Method

Suppose that a ≥ 1 and b ≥ 2 are integers and

T (n) = a T
(n
b

)
+ c ny , T (1) = d .

Let n = bj .

size of subproblem # nodes cost/node total cost

n = bj 1 c ny c ny

n/b = bj−1 a c (n/b)y c a (n/b)y

n/b2 = bj−2 a2 c (n/b2)y c a2 (n/b2)y

...
...

...
...

n/bj−1 = b aj−1 c (n/bj−1)y c aj−1 (n/bj−1)y

n/bj = 1 aj d d aj

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 9 / 13

The Master Method

Suppose that a ≥ 1 and b ≥ 2 are integers and

T (n) = a T
(n
b

)
+ c ny , T (1) = d .

Let n = bj .

size of subproblem # nodes cost/node total cost

n = bj 1 c ny c ny

n/b = bj−1 a c (n/b)y c a (n/b)y

n/b2 = bj−2 a2 c (n/b2)y c a2 (n/b2)y

...
...

...
...

n/bj−1 = b aj−1 c (n/bj−1)y c aj−1 (n/bj−1)y

n/bj = 1 aj d d aj

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 9 / 13

Computing T (n)

Summing the costs of all levels of the recursion tree, we have that

T (n) = d aj + c ny
j−1∑
i=0

(a

by

)i
.

Recall that bx = a and n = bj . Hence aj = (bx)j = (bj)x = nx .

The formula for T (n) is a geometric sequence with ratio
r = a

by = bx−y :

T (n) = d nx + c ny
j−1∑
i=0

r i .

There are three cases, depending on whether r > 1, r = 1 or r < 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 10 / 13

Computing T (n)

Summing the costs of all levels of the recursion tree, we have that

T (n) = d aj + c ny
j−1∑
i=0

(a

by

)i
.

Recall that bx = a and n = bj . Hence aj = (bx)j = (bj)x = nx .

The formula for T (n) is a geometric sequence with ratio
r = a

by = bx−y :

T (n) = d nx + c ny
j−1∑
i=0

r i .

There are three cases, depending on whether r > 1, r = 1 or r < 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 10 / 13

Computing T (n)

Summing the costs of all levels of the recursion tree, we have that

T (n) = d aj + c ny
j−1∑
i=0

(a

by

)i
.

Recall that bx = a and n = bj . Hence aj = (bx)j = (bj)x = nx .

The formula for T (n) is a geometric sequence with ratio
r = a

by = bx−y :

T (n) = d nx + c ny
j−1∑
i=0

r i .

There are three cases, depending on whether r > 1, r = 1 or r < 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 10 / 13

Computing T (n)

Summing the costs of all levels of the recursion tree, we have that

T (n) = d aj + c ny
j−1∑
i=0

(a

by

)i
.

Recall that bx = a and n = bj . Hence aj = (bx)j = (bj)x = nx .

The formula for T (n) is a geometric sequence with ratio
r = a

by = bx−y :

T (n) = d nx + c ny
j−1∑
i=0

r i .

There are three cases, depending on whether r > 1, r = 1 or r < 1.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 10 / 13

Complexity of T (n)

case r y , x complexity of T (n)

heavy leaves r > 1 y < x T (n) ∈ Θ(nx)
balanced r = 1 y = x T (n) ∈ Θ(ny log n)
heavy top r < 1 y > x T (n) ∈ Θ(ny)

“heavy leaves” means that cost of the recursion tree is dominated
by the cost of the leaf nodes.

“heavy top” means that cost of the recursion tree is dominated by
the cost of the root node.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 11 / 13

Complexity of T (n)

case r y , x complexity of T (n)

heavy leaves r > 1 y < x T (n) ∈ Θ(nx)
balanced r = 1 y = x T (n) ∈ Θ(ny log n)
heavy top r < 1 y > x T (n) ∈ Θ(ny)

“heavy leaves” means that cost of the recursion tree is dominated
by the cost of the leaf nodes.

“heavy top” means that cost of the recursion tree is dominated by
the cost of the root node.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 11 / 13

Complexity of T (n)

case r y , x complexity of T (n)

heavy leaves r > 1 y < x T (n) ∈ Θ(nx)
balanced r = 1 y = x T (n) ∈ Θ(ny log n)
heavy top r < 1 y > x T (n) ∈ Θ(ny)

“heavy leaves” means that cost of the recursion tree is dominated
by the cost of the leaf nodes.

“heavy top” means that cost of the recursion tree is dominated by
the cost of the root node.

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 11 / 13

The substitution method

To solve a recurrence do the following:

Guess the solution (or the form of the solution)

Use induction to prove it (and if needed, find a constant)

Example: T (n) = 2T (n2) + n

A. Jamshidpey, C.Roberts (CS, UW) Lecture 2: Solving Recurrences Winter 2025 12 / 13

