CS 341: Algorithms Lec 04: Divide and Conquer (part 2)

Armin Jamshidpey Collin Roberts

Based on lecture notes by Eric Schost ´

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Closest pairs

Goal: given *n* points (x_i, y_i) in the plane, find a pair (i, j) that minimizes the distance

$$
d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
$$

Equivalent to minimize

$$
d_{i,j}^2 = (x_i - x_j)^2 + (y_i - y_j)^2
$$

Assumption: all x_i 's are pairwise distinct

Divide-and-conquer

Idea: separate the points into two halves L, R at the median x-value

- $L = \text{all } n/2 \text{ points with } x \leq x_{\text{median}}$
- $R = \text{all } n/2 \text{ points with } x > x_{\text{median}}$
- \bullet the closest pair is either between points in L (done), or between points in R (done), or transverse (one in L , one in R)

Finding the shortest transverse distance

Set $\delta = \min(\delta_L, \delta_R)$

 \bullet We only need to consider transverse pairs (P, Q) with $dist(P, R) \leq \delta$ and $dist(Q, L) \leq \delta$.

Finding the shortest transverse distance

So it is enough to check distances $d(P,Q)$ for Q in the rectangle.

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with **8** squares of side length $\delta/2$

Squares on the left only contain points from L , squares on the right only contain points from R.

Consequence: in each square, only one point (either from L or R).

Data structures

Initialization: sort the points, with respect to x . Cost: $O(n \log(n))$, before recursive calls Note: Merge based on the y-coordinate so that the result is sorted in y -coordinate.

Then: recursion

- finding the x-median is easy $O(1)$
- for the next recursive calls, split the sorted lists $O(n)$
- remove the points at distance $\geq \delta$ from the x-splitting line $O(n)$
- \bullet inspect all remaining points in increasing y-order. For each of them, compute the distance to the next 8 points and keep the min. $O(n)$

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Beyond the master theorem: median of medians

Median: given $A[0..n-1]$, find the entry that would be at index $\lfloor n/2 \rfloor$ if A was sorted

Selection: given $A[0..n-1]$ and k in $\{0, \ldots, n-1\}$, find the entry that would be at index k if A was sorted **Known results:**

sorting A in $O(n \log(n))$, or a simple randomized algorithm in expected time $O(n)$

The selection algorithm

```
quick-select(A, k)A: array of size n, k: integer s.t. 0 \leq k \leq n1. p \leftarrow \text{choose-pivot}(A)2. i \leftarrow partition(A, p) is the correct index of p
3. if i = k then
4. return A[i]5. else if i > k then
6. return quick-select(A[0, 1, \ldots, i-1], k)<br>7. else if i < k then
    else if i < k then
8. return quick-select(A[i + 1, i + 2, ..., n - 1], k - i - 1)
```
Question: how to find a pivot such that both i and $n - i - 1$ are not too large?

Median of medians

Sketch of the algorithm:

- divide A into $n/5$ groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group $O(n)$
- pivot p is the median of $[m_1, \ldots, m_{n/5}]$

 $T (n/5)$

Claim

With this choice of p, the indices i and $n-i-1$ are at most $7n/10$

Proof

half of the m_i 's are greater than p **n** $\left(\frac{10}{2}\right)$

$$
n/10
$$

- for each m_i , there are **3** elements in G_i greater than or equal to m_i
- so at least $3n/10$ elements greater than p
- so at most $7n/10$ elements less than p
- so i is at most $7n/10$. Same thing for $n-i-1$

Consequence: the runtime $T(n)$ satisfies

$$
T(n) \le T(n/5) + T(7n/10) + O(n)
$$

Claim

This gives $T(n) \in O(n)$