CS 341: Algorithms Lec 04: Divide and Conquer (part 2)

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Closest pairs

Goal: given *n* points (x_i, y_i) in the plane, find a pair (i, j) that minimizes the distance

$$d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Equivalent to minimize

$$d_{i,j}^2 = (x_i - x_j)^2 + (y_i - y_j)^2$$

Assumption: all x_i 's are pairwise distinct

Divide-and-conquer

Idea: separate the points into two halves L, R at the median x-value

- $L = \text{all } n/2 \text{ points with } x \leq x_{\text{median}}$
- $R = \text{all } n/2 \text{ points with } x > x_{\text{median}}$
- the closest pair is either between points in L (done), or between points in R (done), or transverse (one in L, one in R)

Finding the shortest transverse distance

Set $\delta = \min(\delta_L, \delta_R)$

• We only need to consider transverse pairs (P, Q) with $\operatorname{dist}(P, R) \leq \delta$ and $\operatorname{dist}(Q, L) \leq \delta$.

Finding the shortest transverse distance

So it is enough to check distances d(P,Q) for Q in the rectangle.

How many points in the rectangle?

Claim

There are at most **8** points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with **8** squares of side length $\delta/2$

Squares on the left only contain points from L, squares on the right only contain points from R.

Consequence: in each square, only one point (either from L or R).

Data structures

Initialization: sort the points, with respect to x. Cost: $O(n \log(n))$, before recursive calls **Note:** Merge based on the y-coordinate so that the result is sorted in y-coordinate.

Then: recursion

- finding the *x*-median is easy
- for the next recursive calls, split the sorted lists O(n)
- remove the points at distance $\geq \delta$ from the x-splitting line O(n)
- inspect all remaining points in increasing y-order. For each of them, compute the distance to the next 8 points and keep the min. O(n)

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

O(1)

Beyond the master theorem: median of medians

Median: given A[0..n-1], find the entry that would be at index $\lfloor n/2 \rfloor$ if A was sorted

Selection: given A[0..n-1] and k in $\{0, ..., n-1\}$, find the entry that would be at index k if A was sorted Known results:

sorting A in $O(n \log(n))$, or a simple randomized algorithm in expected time O(n)

The selection algorithm

```
quick-select(A, k)
A: array of size n, k: integer s.t. 0 \le k \le n
     p \leftarrow \mathsf{choose-pivot}(A)
1.
2. i \leftarrow partition(A, p)
                                            i is the correct index of p
   if i = k then
3.
4.
           return A[i]
   else if i > k then
5.
           return quick-select(A[0, 1, \ldots, i-1], k)
6.
      else if i < k then
7.
           return quick-select(A[i+1, i+2, ..., n-1], k-i-1)
8.
```

Question: how to find a pivot such that both i and n - i - 1 are not too large?

Median of medians

Sketch of the algorithm:

- divide A into n/5 groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group
- pivot p is the median of $[m_1, \ldots, m_{n/5}]$

 $O(n) \ T(n/5)$

Claim

With this choice of p, the indices i and n - i - 1 are at most 7n/10

Proof

• half of the m_i 's are greater than p

- for each m_i , there are **3** elements in G_i greater than or equal to m_i
- so at least 3n/10 elements greater than p
- so at most 7n/10 elements less than p
- so i is at most 7n/10. Same thing for n-i-1

Consequence: the runtime T(n) satisfies

$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

Claim

This gives $T(n) \in O(n)$

12/12