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Closest pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that
minimizes the distance

di,j =
√

(xi − xj)2 + (yi − yj)2

Equivalent to minimize

d2i,j = (xi − xj)
2 + (yi − yj)

2

Assumption: all xi’s are pairwise distinct
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Divide-and-conquer

Idea: separate the points into two halves L,R at the median
x-value

L = all n/2 points with x ≤ xmedian

R = all n/2 points with x > xmedian

the closest pair is either between points in L (done), or
between points in R (done), or transverse (one in L, one in
R)
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Finding the shortest transverse distance

Set δ = min(δL, δR)

We only need to consider transverse pairs (P,Q) with
dist(P,R) ≤ δ and dist(Q,L) ≤ δ.

A. Jamshidpey C. Roberts (CS, UW) Lec 04: Divide and Conquer Winter 2025 4 / 12



Finding the shortest transverse distance

Set δ = min(δL, δR)

For any P = (xP , yP ), enough to look at points with
yP ≤ y < yP + δ

So it is enough to check distances d(P,Q) for Q in the rectangle.
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How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including
P ) in the rectangle.
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Proof. Cover the rectangle with 8 squares of side length δ/2

Squares on the left only contain points from L, squares on the
right only contain points from R.

Consequence: in each square, only one point (either from L or
R).
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Data structures

Initialization: sort the points, with respect to x.
Cost: O(n log(n)), before recursive calls
Note: Merge based on the y-coordinate so that the result is
sorted in y-coordinate.

Then: recursion

finding the x-median is easy O(1)

for the next recursive calls, split the sorted lists O(n)

remove the points at distance ≥ δ from the x-splitting line
O(n)

inspect all remaining points in increasing y-order. For each
of them, compute the distance to the next 8 points and
keep the min. O(n)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))
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Beyond the master theorem: median of medians

Median: given A[0..n− 1], find the entry that would be at index
⌊n/2⌋ if A was sorted

Selection: given A[0..n− 1] and k in {0, . . . , n− 1}, find the
entry that would be at index k if A was sorted Known results:

sorting A in O(n log(n)), or a simple randomized algorithm in
expected time O(n)

A. Jamshidpey C. Roberts (CS, UW) Lec 04: Divide and Conquer Winter 2025 9 / 12



The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p← choose-pivot(A)
2. i← partition(A, p) i is the correct index of p
3. if i = k then
4. return A[i]
5. else if i > k then
6. return quick-select(A[0, 1, . . . , i− 1], k)
7. else if i < k then
8. return quick-select(A[i+ 1, i+ 2, . . . , n− 1], k − i− 1)

Question: how to find a pivot such that both i and n − i − 1
are not too large?
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Median of medians

Sketch of the algorithm:

divide A into n/5 groups G1, . . . , Gn/5 of size 5

find the medians m1, . . . ,mn/5 of each group O(n)

pivot p is the median of [m1, . . . ,mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at
most 7n/10
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Proof

half of the mi’s are greater than p n/10

for each mi, there are 3 elements in Gi greater than or
equal to mi

so at least 3n/10 elements greater than p

so at most 7n/10 elements less than p

so i is at most 7n/10. Same thing for n− i− 1

Consequence: the runtime T (n) satisfies

T (n) ≤ T (n/5) + T (7n/10) +O(n)

Claim

This gives T (n) ∈ O(n)
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