
CS 341: Algorithms
Lec 05: Breadth First Search

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 1 / 21

Goals

This module:

basics on undirected graphs

undirected BFS and applications (shortest paths, bipartite
graphs, connected components)

undirected DFS and applications (cut vertices)

basics on directed graphs

directed DFS and applications (testing for cycles,
topological sort, strongly connected components)

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 2 / 21

Undirected graphs

Definition, notation: a graph G is pair (V,E):

V is a finite set, whose elements are called vertices

E is a finite set, whose elements are unordered pairs of
distinct vertices, and are called edges.

Convention: n is the number of vertices, m is the number of
edges.

Data structures:

adjacency list: an array A[1..n] s.t. A[v] is the linked list of
all edges connected to v.
2m list cells, total size Θ(n + m), but testing if an edge
exists is not O(1)

adjacency matrix: a (0, 1) matrix M of size n× n, with
M [v, w] = 1 iff {v, w} is an edge.
size Θ(n2), but testing if an edge exists is O(1)

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 3 / 21

Representations of graphs

1 2

3

45

[CLRS]

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 4 / 21

Connected graphs, path, cycles, trees

Definition:

path: a sequence v1, . . . , vk of vertices, with {vi, vi+1} in E
for all i.
k = 1 is OK.

connected graph: G = (V,E) such that for all v, w in V ,
there is a path v ; w

cycle: a path v1, . . . , vk, v1 with k ≥ 3 and vi’s pairwise
distinct

tree: a connected graph without any cycle

rooted tree: a tree with a special vertex called root

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 5 / 21

Subgraphs, connected components

Definition:

subgraph of G = (V,E): a graph G′ = (V ′, E′), where
▶ V ′ ⊂ V
▶ E′ ⊂ E, with all edges E′ joining vertices from V ′

connected component of G = (V,E)
▶ a connected subgraph of G
▶ that is not contained in a larger connected subgraph of G

Let Gi = (Vi, Ei), i = 1, . . . , s be the connected components of
G = (V,E).

the Vi’s are a partition of V , with
∑

i ni = n ni = |Vi|
the Ei’s are a partition of E, with

∑
imi = m mi = |Ei|

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 6 / 21

Breadth-first search

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 7 / 21

Breadth-first exploration Idea

Activity

Assume we are looking for a person in a social network and we
don’t want to use the usual search. What is a possible strategy?

https://padlet.com/arminjamshidpey/CS341

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 8 / 21

https://padlet.com/arminjamshidpey/CS341

Breadth-first exploration of a graph

BFS(G, s)
G: a graph with n vertices, given by adjacency lists
s: a vertex from G
1. let Q be an empty queue
2. let visited be an array of size n, with all entries set to false
3. enqueue(s,Q)
4. visited[s]← true
5. while Q not empty do
6. v ← dequeue(Q)
7. for all w neighbours of v do
8. if visited[w] is false
9. enqueue(w,Q)
10. visited[w]← true

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 9 / 21

Complexity

Anaysis:

each vertex is enqueued at most once

so each vertex is dequeued at most once

so each adjacency list is read at most once

For all v, write dv = number of neighbours of v = length of A[v]
= degree of v.

Then total cost at step 7 is

O

(∑
v

dv

)
= O(m)

cf. the adjacency array A has 2m cells (handshaking lemma)

Total: O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 10 / 21

True/False

For all vertices v, there is a path s ; v in G if and only if

visited[v] is true at the end.

https://padlet.com/arminjamshidpey/CS341

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 11 / 21

https://padlet.com/arminjamshidpey/CS341

Correctness

Claim

For all vertices v, if visited[v] is true at the end, there is a
path s ; v in G

Proof. Let s = v0, . . . , vK be the vertices for which visited is set
to true, in this order. We prove: for all i, there is a path s ; vi,
by induction.

OK for i = 0

suppose true for v0, . . . , vi−1.

when visited[vi] is set to true, we are examining the
neighbours of a certain vj , j < i.

by assumption, there is a path s ; vj

because {vj , vi} is in E, there is a path s ; vi

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 12 / 21

Correctness

Claim

For all vertices v, if there is a path s ; v in G, visited[v]
is true at the end

Proof. Let v0 = s, . . . , vk = v be a path s ; v. We prove
visited[vi] is true for all i, by induction.

visited[v0] is true

if visited[vi] is true, we will examine all neighbours u of vi

so at the end of Step 7, all visited[u] will be true, for u
neighbour of vi

in particular, visited[vi+1] will be true

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 13 / 21

Correctness

Lemma

For all vertices v, there is a path s ; v in G if and only if

visited[v] is true at the end

Applications

testing if there is a path s ; v

testing if G is connected

in O(n + m).

Exercise

For a connected graph, m ≥ n− 1.

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 14 / 21

Keeping track of parents and levels

BFS(G, s)
1. let Q be an empty queue
2. let parent be an array of size n, with all entries set to NIL
3. let level be an array of size n, with all entries set to ∞
4. enqueue(s,Q)
5. parent[s]← s
6. level[s]← 0
7. while Q not empty do
8. v ← dequeue(Q)
9. for all w neighbours of v do
10. if parent[w] is NIL
11. enqueue(w,Q)
12. parent[w]← v
13. level[w]← level[v] + 1

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 15 / 21

BFS tree
Definition: the BFS tree T is the subgraph made of:

all w such that parent[w] ̸= NIL.

all edges {w, parent[w]}, for w as above (except w = s)

Claim

The BFS tree T is a tree

Proof: by induction on the vertices for which parent[v] is not
NIL

when we set parent[s]← s, only one vertex, no edge.

suppose true before we set parent[w]← v

v was in T before, w was not, so we add one vertex w and
one edge {v, w} to T

so T remains a tree

Remark: we make it a rooted tree by choosing s as root
A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 16 / 21

Shortest paths from the BFS tree

Sub-claim 1

The levels in the queue are non-decreasing

Proof: Exercise.

Sub-claim 2

For all vertices u, v, if there is an edge {u, v}, then level[v] ≤ level[u]+
1.

Proof:

if we dequeue v before u, level[v] ≤ level[u] sub-claim 1

if we dequeue u before v, the parent of v is either u, or was dequeued
before u

in any case, level[parent[v]] ≤ level[u] sub-claim 1

but level[parent[v]] = level[v]− 1, so OK

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 17 / 21

Shortest paths from the BFS tree

Claim

For all v in G:

there is a path s ; v in G iff there is a path s ; v in T

if so, the path in T is a shortest path and level[v] = dist(s, v)

Proof. First item: Exercise.
Second item:

dist(s, v) ≤ level[v] (follow the path on T)

for all i, for all v, if there is a path s ; v of length i, then level[v] ≤ i.

▶ true for i = 0
▶ suppose true for i− 1 and take v, a path s ; v of length i

and let u be the vertex before v.
induction assumption: level[u] ≤ i− 1, so level[v] ≤ i
sub-claim 2

so level[v] ≤ dist(s, v).

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 18 / 21

Bipartite graphs

Definition

a graph G = (V,E) is bipartite if there is a partition
V = V1 ∪ V2 such that all edges have one end in V1 and one
end in V2.

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 19 / 21

Using BFS to test bipartite-ness

Claim.

Suppose G connected, run BFS from any s, and set

V1 = vertices with odd level

V2 = vertices with even level.

Then G is bipartite if and only if all edges have one end
in V1 and one end in V2 (testable in O(m))

Proof. ⇐= obvious.

For =⇒ , let W1,W2 be a bipartition. Because paths alternate
between W1,W2:

V1 (= vertices with odd level) is included in W1 (say)

V2 (= vertices with even level) is included in W2

So V1 = W1 and V2 = W2.

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 20 / 21

Computing the connected components

Idea: add an outer loop that runs BFS on successive vertices

Exercise

Fill in the details.

Complexity:

each pass of BFS O(ni + mi), if Gi(Vi, Ei) is the ith
connected component

total O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 05: Breadth First Search Winter 2025 21 / 21

