CS 341: Algorithms Lec 05: Breadth First Search

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Goals

This module:

- $\bullet \ basics \ on \ undirected \ graphs$
- undirected BFS and applications (shortest paths, bipartite graphs, connected components)
- undirected DFS and applications (cut vertices)
- basics on **directed graphs**
- directed DFS and applications (testing for cycles, topological sort, strongly connected components)

Undirected graphs

Definition, notation: a graph G is pair (V, E):

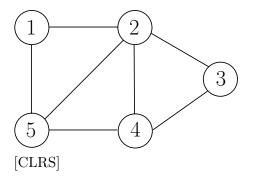
- $\bullet~V$ is a finite set, whose elements are called vertices
- E is a finite set, whose elements are unordered pairs of distinct vertices, and are called edges.

Convention: n is the number of vertices, m is the number of edges.

Data structures:

- adjacency list: an array A[1..n] s.t. A[v] is the linked list of all edges connected to v.
 2m list cells, total size ⊖(n + m), but testing if an edge exists is not O(1)
- adjacency matrix: a (0,1) matrix M of size n × n, with M[v, w] = 1 iff {v, w} is an edge.
 size ⊖(n²), but testing if an edge exists is O(1)

Representations of graphs



Connected graphs, path, cycles, trees

Definition:

- path: a sequence v₁,..., v_k of vertices, with {v_i, v_{i+1}} in E for all i.
 k = 1 is OK.
- connected graph: G = (V, E) such that for all v, w in V, there is a path v → w
- cycle: a path v_1, \ldots, v_k, v_1 with $k \geq 3$ and v_i 's pairwise distinct
- tree: a connected graph without any cycle
- rooted tree: a tree with a special vertex called root

Subgraphs, connected components

Definition:

- subgraph of G = (V, E): a graph G' = (V', E'), where
 - $\blacktriangleright V' \subset V$
 - $E' \subset E$, with all edges E' joining vertices from V'
- connected component of G = (V, E)
 - \blacktriangleright a connected subgraph of G
 - \blacktriangleright that is not contained in a larger connected subgraph of G

Let $G_i = (V_i, E_i), i = 1, ..., s$ be the connected components of G = (V, E).

- the V_i 's are a partition of V, with $\sum_i n_i = n$ $n_i = |V_i|$
- the E_i 's are a partition of E, with $\sum_i m_i = m$ $m_i = |E_i|$

Breadth-first search

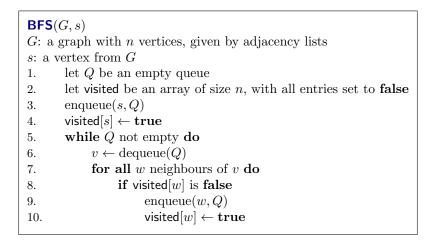
Breadth-first exploration Idea

Activity

Assume we are looking for a person in a social network and we don't want to use the usual search. What is a possible strategy?

https://padlet.com/arminjamshidpey/CS341

Breadth-first exploration of a graph



Complexity

Anaysis:

- each vertex is enqueued at most once
- so each vertex is dequeued at most once
- so each adjacency list is read at most once

For all v, write d_v = number of neighbours of v = length of A[v] = **degree** of v.

Then total cost at step 7 is

$$O\left(\sum_v d_v\right) = O(m)$$

cf. the adjacency array A has 2m cells (handshaking lemma) Total: O(n + m)

True/False

For all vertices v, there is a path $s \rightsquigarrow v$ in G if and only if visited[v] is true at the end.

https://padlet.com/arminjamshidpey/CS341

Correctness

Claim

For all vertices v, if $\mathsf{visited}[v]$ is true at the end, there is a path $s \rightsquigarrow v$ in G

Proof. Let $s = v_0, \ldots, v_K$ be the vertices for which visited is set to true, in this order. We prove: for all *i*, there is a path $s \rightsquigarrow v_i$, by induction.

- OK for i = 0
- suppose true for v_0, \ldots, v_{i-1} .

when visited $[v_i]$ is set to true, we are examining the neighbours of a certain v_j , j < i.

by assumption, there is a path $s \rightsquigarrow v_j$

because $\{v_j, v_i\}$ is in E, there is a path $s \rightsquigarrow v_i$

Correctness

Claim

For all vertices v, if there is a path $s \rightsquigarrow v$ in G, visited[v] is true at the end

Proof. Let $v_0 = s, \ldots, v_k = v$ be a path $s \rightsquigarrow v$. We prove visited $[v_i]$ is true for all i, by induction.

- visited[v₀] is true
- if visited[vi] is true, we will examine all neighbours u of vi so at the end of Step 7, all visited[u] will be true, for u neighbour of vi

in particular, visited $[v_{i+1}]$ will be true

Correctness

Lemma

```
For all vertices v, there is a path s \rightsquigarrow v in G if and only if visited[v] is true at the end
```

Applications

- testing if there is a path $s \rightsquigarrow v$
- testing if G is connected

in O(n+m).

Exercise

For a connected graph, $m \ge n-1$.

14/21

Keeping track of parents and levels

$\boxed{BFS(G,s)}$	
1.	let Q be an empty queue
2.	let parent be an array of size n , with all entries set to NIL
3.	let level be an array of size n , with all entries set to ∞
4.	enqueue(s, Q)
5.	$parent[s] \leftarrow s$
6.	$level[s] \leftarrow 0$
7.	while Q not empty do
8.	$v \leftarrow \text{dequeue}(Q)$
9.	for all w neighbours of v do
10.	if parent $[w]$ is NIL
11.	$\operatorname{enqueue}(w,Q)$
12.	$parent[w] \leftarrow v$
13.	$level[w] \leftarrow level[v] + 1$

BFS tree

Definition: the **BFS tree** T is the subgraph made of:

- all w such that $parent[w] \neq NIL$.
- all edges $\{w, parent[w]\}$, for w as above (except w = s)

Claim

The BFS tree T is a tree

Proof: by induction on the vertices for which $\mathsf{parent}[v]$ is not **NIL**

- when we set $parent[s] \leftarrow s$, only one vertex, no edge.
- suppose true before we set $parent[w] \leftarrow v$

v was in T before, w was not, so we add one vertex w and one edge $\{v,w\}$ to T

so ${\cal T}$ remains a tree

Remark: we make it a **rooted** tree by choosing s as root

Shortest paths from the BFS tree

Sub-claim 1

The levels in the queue are non-decreasing

Proof: Exercise.

Sub-claim 2

For all vertices u,v, if there is an edge $\{u,v\},$ then $\mathsf{level}[v] \le \mathsf{level}[u] + 1.$

Proof:

- if we dequeue v before $u,\, \mathsf{level}[v] \leq \mathsf{level}[u]$ sub-claim 1
- if we dequeue u before v, the parent of v is either u, or was dequeued before u

in any case, $\mathsf{level}[\mathsf{parent}[v]] \le \mathsf{level}[u]$ sub-claim 1 but $\mathsf{level}[\mathsf{parent}[v]] = \mathsf{level}[v] - 1$, so OK

Shortest paths from the BFS tree

Claim

For all v in G:

- there is a path $s \rightsquigarrow v$ in G iff there is a path $s \rightsquigarrow v$ in T
- if so, the path in T is a shortest path and |evel[v]| = dist(s, v)

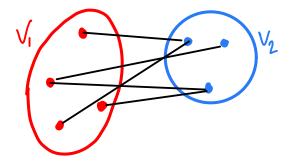
Proof. First item: Exercise. Second item:

- $\operatorname{dist}(s, v) \leq \operatorname{\mathsf{level}}[v]$ (follow the path on T)
- for all i, for all v, if there is a path $s \rightsquigarrow v$ of length i, then $|eve|[v] \le i$.
 - true for i = 0
 - suppose true for i − 1 and take v, a path s → v of length i and let u be the vertex before v.
 induction assumption: level[u] ≤ i − 1, so level[v] ≤ i sub-claim 2
- so $\mathsf{level}[v] \le \operatorname{dist}(s, v)$.

Bipartite graphs

Definition

a graph G = (V, E) is bipartite if there is a partition
 V = V₁ ∪ V₂ such that all edges have one end in V₁ and one end in V₂.



Using BFS to test bipartite-ness

Claim.

Suppose G connected, run BFS from any s, and set

- V_1 = vertices with odd level
- V_2 = vertices with even level.

Then G is bipartite if and only if all edges have one end in V_1 and one end in V_2 (testable in O(m))

Proof. \Leftarrow obvious.

For \implies , let W_1, W_2 be a bipartition. Because paths alternate between W_1, W_2 :

- V_1 (= vertices with odd level) is included in W_1 (say)
- V_2 (= vertices with even level) is included in W_2

So $V_1 = W_1$ and $V_2 = W_2$.

Computing the connected components

Idea: add an outer loop that runs BFS on successive vertices

Exercise

Fill in the details.

Complexity:

- each pass of BFS $O(n_i + m_i)$, if $G_i(V_i, E_i)$ is the *i*th connected component
- total O(n+m)