
CS 341: Algorithms
Lec 05: Divide and Conquer (part 3)

Armin Jamshidpey Collin Roberts

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 1 / 17

Closest Pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that
minimizes the distance

di,j =
√

(xi − xj)2 + (yi − yj)2

Equivalent to minimize

d2i,j = (xi − xj)
2 + (yi − yj)

2

Assumption: all xi’s are pairwise distinct

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 2 / 17

Setup

1 Brute Force: T (n) ∈ Θ(n2).

2 Goal: T (n) ∈ Θ(n log n).

3 Q denotes the entire set of points, given when the
algorithm kicks off.

4 Each recursive invocation takes as input
1 a subset P ⊆ Q,
2 an array X, which contains all the points of P , sorted by

non-decreasing x-co-ordinate, and
3 an array Y , which contains all the points of P , sorted by

non-decreasing y-co-ordinate.

5 Note, we cannot afford to sort in each recursive call: this
would make our recurrence T (n) = 2T

(
n
2

)
+O(n log n),

leading to run time T (n) ∈ O(n log2 n) (See the end of this
slide deck).

6 Later, we will show how to use “pre-sorting” once and for
all to avoid having to sort in each recursive call.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 3 / 17

When Recursion Stops

1 Check whether |P | ≤ 3.

2 If |P | ≤ 3, then use the brute force approach: Try all
(|P |

2

)
possible pairs, and return the closest pair.

3 Otherwise, carry out the Divide-and-Conquer algorithm
described below.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 4 / 17

Divide-and-conquer: Divide

1 Find a vertical line, ℓ that bisects the point set P into two
sets PL, PR, such that

1

|PL| =

⌈
|P |
2

⌉
|PR| =

⌊
|P |
2

⌋
,

2 all points in PL are to the left of ℓ, and
3 all points in PR are on or to the right of ℓ.

2 Divide X into arrays XL, XR, containing the points of
PL, RR, respectively, sorted by non-decreasing
x-co-ordinate.

3 Divide Y into arrays YL, YR, containing the points of
PL, RR, respectively, sorted by non-decreasing
y-co-ordinate.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 5 / 17

Divide-and-conquer: Conquer

1 Make two recursive calls:
1 one with arguments (PL, XL, YL), to find the closest pair of

points in PL, at distance δL from one another, and
2 the other with arguments (PR, XR, YR), to find the closest

pair of points in PR, at distance δR from one another.

2 Let δ = min(δL, δR).

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 6 / 17

Divide-and-conquer: Combine

1 The closest pair of points is either the pair at distance δ
from one another found by one of the above recursive calls,
or it is a pair of points with one point in PL and the other
in PR (i.e. a transverse pair).

2 The rest of the Combine step is to determine whether there
exists a transverse pair whose points are at a distance < δ
from one another.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 7 / 17

Divide-and-conquer: Combine - Find Transverse Pair
Having Distance < δ, If One Exists

1 Observe that, if such a transverse pair exists, then both
points of the pair must be at distance ≤ δ from the line ℓ.

2 This is where the vertical strip of width 2δ comes from.
3 Find such a pair, if it exists, as follows:

1 Create array Y ′, from Y , by removing all points from Y
which do not lie in the 2δ-wide vertical strip. Preserve the
sorting by y-co-ordinate from Y as we create Y ′ from it.

2 For each point p ∈ Y ′, find all points in Y ′ that are at
distance < δ from p. We claim that we only need to check
the 7 points following p in Y ′ (proof below). Compute the
distance from p to each of these 7 following points. Keep
track of the closest pair distance, δ′, over all such pairs of
points in Y ′.

3 If δ′ < δ, then return the (transverse) pair having distance
δ′; otherwise return the closest pair and distance δ found by
one of the recursive calls above.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 8 / 17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

1 Suppose that, at some level of the recursion, the closest
pair of points is pL ∈ PL, and pR ∈ PR. I.e. suppose that
the distance between these points is δ′ < δ.

2 Then pL is to the left of ℓ, at a distance of ≤ δ from ℓ;
similarly pR is on or to the right of ℓ, at a distance of ≤ δ
from ℓ. (This is the vertical band of width 2δ from earlier.)

3 Moreover, pL, pR are at a distance of ≤ δ from each other
vertically. (This gives us the rectangle from earlier,
disregarding the orderings of the points for the moment;
there may be other points within this rectangle as well.)

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 9 / 17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

1 The argument from the earlier slide deck, that at most 8
points can lie inside this rectangle, is clear enough.

2 We still need to show that it suffices to check only the 7
points following each point in the array Y ′.

3 WLOG, suppose that pL occurs before pR in the array Y ′

(if not, simply swap them).

4 Because pL, pR both lie in the rectangle, with pL before pR
in the y-co-ordinate ordering, it suffices to consider points
pR having y-co-ordinates in the range ypL ≤ y ≤ ypL + δ (as
in the earlier slide deck).

5 Even if pL occurs as early as possible in Y ′, and pR occurs
as late as possible in Y ′, they can be no more than 8
positions apart from one another (because at most 8 points
can lie in the rectangle, as observed earlier).

6 Hence pR lies no more than 7 positions after pL, in Y ′.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 10 / 17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

1 This completes the argument of the correctness of the
provided algorithm.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 11 / 17

Divide-and-conquer: Preserving Sorting by x- and
y-Co-ordinates

How to split the sorted arrays for the recursive calls:

1 A particular invocation is given a subset P and the arrays
X, sorted by x-co-ordinate and Y , sorted by y-co-ordinate.

2 Consider forming YL, YR from Y . The same approach will
then work for forming XL, XR from X.

3 Having partitioned P into PL, PR, we must form arrays
YL, YR, sorted by y-co-ordinate (in linear time).

4 Think of this as the opposite of MERGE: split a sorted
array into two sorted arrays.

5 Examine the points in Y in order.

6 If a point Y [i] is in PL, then append it to YL; otherwise
append it to YR.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 12 / 17

Counting Inversions

Analysis of T (n) = 2T
(
n
2

)
+ dn log n

1 We guess that T (n) ∈ Θ
(
n log2 n

)
.

2 These proofs follow the technique of substitution,
demonstrated in §4.1 of CLRS.

3 As in CLRS, we ignore boundary conditions, since they do
not affect the order of the growth.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 13 / 17

Counting Inversions

Proof that T (n) ∈ O(n log2 n)

1 Assume that n is even, and that the bound holds for n
2 .

2 Suppose that there exists a constant c > 0 and an n0 such
that, for all n ≥ n0,

T
(n
2

)
≤ c

(n
2

)
log2

(n
2

)
.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 14 / 17

Counting Inversions

Then substituting into the recurrence yields

T (n) = 2T
(n
2

)
+ dn log n

≤ 2
[
c
(n
2

)
log2

(n
2

)]
+ dn log n

= cn (log n− log 2)2 + dn log n

= cn (log n− 1)2 + dn log n

= cn
(
log2 n− 2 log n+ 1

)
+ dn log n

= cn log2 n+ cn(1− 2 log n) + dn log n

≤ cn log2 n,

provided cn(1− 2 log n) + dn log n ≤ 0, which will hold provided

c ≥ d log n

2 log n− 1
≥ d log n

2 log n
=

d

2
.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 15 / 17

Counting Inversions

Proof that T (n) ∈ Ω(n log2 n)
Suppose that there exists a constant c > 0 and an n0 such that,
for all n ≥ n0,

c
(n
2

)
log2

(n
2

)
≤ T

(n
2

)
.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 16 / 17

Counting Inversions

Then substituting into the recurrence yields

T (n) = 2T
(n
2

)
+ dn log n

≥ 2
[
c
(n
2

)
log2

(n
2

)]
+ dn log n

= cn (log n− log 2)2 + dn log n

= cn (log n− 1)2 + dn log n

= cn
(
log2 n− 2 log n+ 1

)
+ dn log n

= cn log2 n+ cn(1− 2 log n) + dn log n

≥ cn log2 n,

provided cn(1− 2 log n) + dn log n ≥ 0, which will hold provided

c ≤ d log n

2 log n− 1
≤ d log n

2 log n− log n
= d.

A. Jamshidpey C. Roberts (CS, UW) Lec 05: Divide and Conquer Winter 2025 17 / 17

	Closest Pairs
	Counting Inversions

