A. Jamshidpey

CS 341: Algorithms
Lec 05: Divide and Conquer (part 3)

Armin Jamshidpey Collin Roberts

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

C. Roberts (CS, UY Lec 05: Divide and Conquer

Closest Pairs

Goal: given n points (x;,y;) in the plane, find a pair (i,7) that
minimizes the distance

dij = \/(%‘ —25)* + (yi — y5)?

Equivalent to minimize

47 = (z — 25)” + (yi — y;)?

Assumption: all x;’s are pairwise distinct

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 2/17

Setup
@ Brute Force: T(n) € O(n?).
Goal: T'(n) € ©(nlogn).

Q) denotes the entire set of points, given when the
algorithm kicks off.

© o0

Each recursive invocation takes as input
@ asubset P C Q,
® an array X, which contains all the points of P, sorted by
non-decreasing x-co-ordinate, and
® an array Y, which contains all the points of P, sorted by
non-decreasing y-co-ordinate.
@ Note, we cannot afford to sort in each recursive call: this
would make our recurrence T'(n) = 2T (%) 4+ O(nlogn),
leading to run time T'(n) € O(nlog?n) (See the end of this
slide deck).

O Later, we will show how to use “pre-sorting” once and for
all to avoid having to sort in each recursive call.

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 3/17

When Recursion Stops

@ Check whether |P| < 3.

@ If |P| < 3, then use the brute force approach: Try all ('5 |)
possible pairs, and return the closest pair.

@ Otherwise, carry out the Divide-and-Conquer algorithm
described below.

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 4/17

Divide-and-conquer: Divide

O Find a vertical line, ¢ that bisects the point set P into two

sets Pr, Pr, such that
o

|PL]

o
2

@ all points in P;, are to the left of £, and
@® all points in Pr are on or to the right of /.

| Pr|

@ Divide X into arrays Xy, Xg, containing the points of
Pr, Rp, respectively, sorted by non-decreasing
x-co-ordinate.

@ Divide Y into arrays Y7, Yr, containing the points of
Pr, RR, respectively, sorted by non-decreasing
y-co-ordinate.

A. Jamshidpey C. Roberts (CS, UY Lec 05: Divide and Conquer ‘Winter 2025

5/17

Divide-and-conquer: Conquer

@ Make two recursive calls:
© one with arguments (Pr, X1, Y1), to find the closest pair of
points in Pr,, at distance ¢, from one another, and
® the other with arguments (Pr, Xg, Yr), to find the closest
pair of points in Pg, at distance dr from one another.

@ Let 6 = min(dz,0R).

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 6/17

Divide-and-conquer: Combine

@ The closest pair of points is either the pair at distance §
from one another found by one of the above recursive calls,
or it is a pair of points with one point in Py, and the other
in Pg (i.e. a transverse pair).

@ The rest of the Combine step is to determine whether there
exists a transverse pair whose points are at a distance < §
from one another.

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 7/17

Divide-and-conquer: Combine - Find Transverse Pair
Having Distance < 4, If One Exists

© Observe that, if such a transverse pair exists, then both

points of the pair must be at distance < ¢ from the line /.

@ This is where the vertical strip of width 26 comes from.

@ Find such a pair, if it exists, as follows:

® Create array Y, from Y, by removing all points from Y

which do not lie in the 2§-wide vertical strip. Preserve the
sorting by y-co-ordinate from Y as we create Y’ from it.
For each point p € Y, find all points in Y’ that are at
distance < § from p. We claim that we only need to check
the 7 points following p in Y’ (proof below). Compute the
distance from p to each of these 7 following points. Keep
track of the closest pair distance, ¢’, over all such pairs of
points in Y.

If 6" < §, then return the (transverse) pair having distance
d'; otherwise return the closest pair and distance § found by
one of the recursive calls above.

A. Jamshidpey

C. Roberts (CS, UY Lec 05: Divide and Conquer ‘Winter 2025

8/17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

@ Suppose that, at some level of the recursion, the closest
pair of points is py, € Pr, and pr € Pr. L.e. suppose that
the distance between these points is ¢’ < 0.

@ Then py, is to the left of ¢, at a distance of < ¢ from /;
similarly pg is on or to the right of ¢, at a distance of < §
from ¢. (This is the vertical band of width 26 from earlier.)

@ Moreover, pr,pr are at a distance of < § from each other
vertically. (This gives us the rectangle from earlier,
disregarding the orderings of the points for the moment;
there may be other points within this rectangle as well.)

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 9/17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

o

The argument from the earlier slide deck, that at most 8
points can lie inside this rectangle, is clear enough.

We still need to show that it suffices to check only the 7
points following each point in the array Y.

WLOG, suppose that py, occurs before pg in the array Y’
(if not, simply swap them).

Because pr, pr both lie in the rectangle, with p;, before pgr
in the y-co-ordinate ordering, it suffices to consider points
pr having y-co-ordinates in the range y,, <y <y,, +0 (as
in the earlier slide deck).

Even if p;, occurs as early as possible in Y/, and pg occurs
as late as possible in Y’, they can be no more than 8
positions apart from one another (because at most 8 points
can lie in the rectangle, as observed earlier).

Hence pg lies no more than 7 positions after py, in Y.

A. Jamshidpey

C. Roberts (CS, UY Lec 05: Divide and Conquer ‘Winter 2025

10 /17

Divide-and-conquer: Combine - Why Only The 7
Following Points Need to be Checked.

@ This completes the argument of the correctness of the
provided algorithm.

A. Jamshidpey C. Roberts (CS, UY Lec 05: Divide and Conquer

Divide-and-conquer: Preserving Sorting by x- and
y-Co-ordinates

How to split the sorted arrays for the recursive calls:

@ A particular invocation is given a subset P and the arrays
X, sorted by z-co-ordinate and Y, sorted by y-co-ordinate.

@ Consider forming Y7, Ygr from Y. The same approach will
then work for forming Xy, Xp from X.

@ Having partitioned P into Py, Pr, we must form arrays
Y1, YR, sorted by y-co-ordinate (in linear time).

@ Think of this as the opposite of MERGE: split a sorted
array into two sorted arrays.

@ Examine the points in Y in order.

@ If a point Y[i] is in Pr, then append it to Yz; otherwise
append it to Yx.

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 12 /17

Counting Inversions

Analysis of T'(n) = 2T (%) + dnlogn

© We guess that T'(n) € © (nlog®n).

@ These proofs follow the technique of substitution,
demonstrated in §4.1 of CLRS.

@ As in CLRS, we ignore boundary conditions, since they do
not affect the order of the growth.

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 13 /17

Counting Inversions

Proof that T'(n) € O(nlog?n)

@ Assume that n is even, and that the bound holds for 7.

© Suppose that there exists a constant ¢ > 0 and an ng such
that, for all n > ny,

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 14 /17

Counting Inversions

Then substituting into the recurrence yields

T(n) = 2T (g) + dnlogn

2 [c (g) log? (g)} + dnlogn

= c¢n(logn — log 2)2 + dnlogn

IN

en (logn —1)% + dnlogn
cn (logzn —2logn + 1) + dnlogn

cnlog?n + cen(1 — 2logn) + dnlogn

< enlog?n,
provided en(1 — 2logn) + dnlogn < 0, which will hold provided

dlogn S dlogn d

€= 2logn —1 ~ 2logn 2

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 15 /17

Counting Inversions

Proof that T'(n) € Q(nlog?n)

Suppose that there exists a constant ¢ > 0 and an ng such that,

“(3)e(5) =7 (3):

for all n > ng,

A. Jamshidpey C. Roberts (CS, U\ Lec 05: Divide and Conquer ‘Winter 2025 16 /17

Counting Inversions

Then substituting into the recurrence yields

T(n) =

v

>

2T (g) + dnlogn

2 [c (g) log? (g)} + dnlogn

cn (logn — log 2)2 + dnlogn

en (logn —1)% + dnlogn

cn (logzn —2logn + 1) + dnlogn
cnlog?n + cen(1 — 2logn) + dnlogn

enlog?n,

provided en(1 — 2logn) + dnlogn > 0, which will hold provided

dlogn < dlogn

<
=3

logn—1 ~ 2logn —logn -

A. Jamshidpey

C. Roberts (CS, UY

Lec 05: Divide and Conquer Winter 2025

17 /17

	Closest Pairs
	Counting Inversions

