CS 341: Algorithms Lec 05: Divide and Conquer (part 3)

Armin Jamshidpey Collin Roberts

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Closest Pairs

Goal: given n points (x_i, y_i) in the plane, find a pair (i, j) that minimizes the distance

$$d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Equivalent to minimize

$$d_{i,j}^2 = (x_i - x_j)^2 + (y_i - y_j)^2$$

Assumption: all x_i 's are pairwise distinct

Setup

- Brute Force: $T(n) \in \Theta(n^2)$.
- **2** Goal: $T(n) \in \Theta(n \log n)$.
- Q denotes the entire set of points, given when the algorithm kicks off.
- Each recursive invocation takes as input
 - $\bullet \text{ a subset } P \subseteq Q,$
 - **2** an array X, which contains all the points of P, sorted by non-decreasing x-co-ordinate, and
 - an array Y, which contains all the points of P, sorted by non-decreasing y-co-ordinate.
- Note, we cannot afford to sort in each recursive call: this would make our recurrence $T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n)$, leading to run time $T(n) \in O(n \log^2 n)$ (See the end of this slide deck).
- Later, we will show how to use "pre-sorting" once and for all to avoid having to sort in each recursive call.

When Recursion Stops

- Check whether $|P| \leq 3$.
- ② If |P| ≤ 3, then use the brute force approach: Try all $\binom{|P|}{2}$ possible pairs, and return the closest pair.
- Otherwise, carry out the Divide-and-Conquer algorithm described below.

Divide-and-conquer: Divide

• Find a vertical line, ℓ that bisects the point set P into two sets P_L, P_R , such that

1

$$|P_L| = \left[\frac{|P|}{2}\right]$$
$$|P_R| = \left\lfloor\frac{|P|}{2}\right\rfloor$$

2 all points in P_L are to the left of ℓ , and

3 all points in P_R are on or to the right of ℓ .

- Divide X into arrays X_L, X_R, containing the points of P_L, R_R, respectively, sorted by non-decreasing x-co-ordinate.
- Divide Y into arrays Y_L, Y_R, containing the points of P_L, R_R, respectively, sorted by non-decreasing y-co-ordinate.

Divide-and-conquer: Conquer

- Make two recursive calls:
 - one with arguments (P_L, X_L, Y_L) , to find the closest pair of points in P_L , at distance δ_L from one another, and
 - **2** the other with arguments (P_R, X_R, Y_R) , to find the closest pair of points in P_R , at distance δ_R from one another.

2 Let
$$\delta = \min(\delta_L, \delta_R)$$
.

Divide-and-conquer: Combine

- The closest pair of points is either the pair at distance δ from one another found by one of the above recursive calls, or it is a pair of points with one point in P_L and the other in P_R (i.e. a **transverse** pair).
- 2 The rest of the Combine step is to determine whether there exists a transverse pair whose points are at a distance < δ from one another.</p>

Divide-and-conquer: Combine - Find Transverse Pair Having Distance $< \delta$, If One Exists

- Observe that, if such a transverse pair exists, then both points of the pair must be at distance $\leq \delta$ from the line ℓ .
- **2** This is where the vertical strip of width 2δ comes from.
- **③** Find such a pair, if it exists, as follows:
 - Create array Y', from Y, by removing all points from Y which do not lie in the 2δ-wide vertical strip. Preserve the sorting by y-co-ordinate from Y as we create Y' from it.
 - Por each point p ∈ Y', find all points in Y' that are at distance < δ from p. We claim that we only need to check the 7 points following p in Y' (proof below). Compute the distance from p to each of these 7 following points. Keep track of the closest pair distance, δ', over all such pairs of points in Y'.</p>
 - If δ' < δ, then return the (transverse) pair having distance δ'; otherwise return the closest pair and distance δ found by one of the recursive calls above.

Divide-and-conquer: Combine - Why Only The 7 Following Points Need to be Checked.

- Suppose that, at some level of the recursion, the closest pair of points is $p_L \in P_L$, and $p_R \in P_R$. I.e. suppose that the distance between these points is $\delta' < \delta$.
- **2** Then p_L is to the left of ℓ , at a distance of $\leq \delta$ from ℓ ; similarly p_R is on or to the right of ℓ , at a distance of $\leq \delta$ from ℓ . (This is the vertical band of width 2δ from earlier.)
- Moreover, p_L, p_R are at a distance of ≤ δ from each other vertically. (This gives us the rectangle from earlier, disregarding the orderings of the points for the moment; there may be other points within this rectangle as well.)

Divide-and-conquer: Combine - Why Only The 7 Following Points Need to be Checked.

- The argument from the earlier slide deck, that at most 8 points can lie inside this rectangle, is clear enough.
- 2 We still need to show that it suffices to check only the 7 points following each point in the array Y'.
- WLOG, suppose that p_L occurs before p_R in the array Y' (if not, simply swap them).
- Because p_L, p_R both lie in the rectangle, with p_L before p_R in the y-co-ordinate ordering, it suffices to consider points p_R having y-co-ordinates in the range $y_{p_L} \leq y \leq y_{p_L} + \delta$ (as in the earlier slide deck).
- Even if p_L occurs as early as possible in Y', and p_R occurs as late as possible in Y', they can be no more than 8 positions apart from one another (because at most 8 points can lie in the rectangle, as observed earlier).
- Hence p_R lies no more than 7 positions after p_L , in Y'.

Divide-and-conquer: Combine - Why Only The 7 Following Points Need to be Checked.

• This completes the argument of the correctness of the provided algorithm.

Divide-and-conquer: Preserving Sorting by x- and y-Co-ordinates

How to split the sorted arrays for the recursive calls:

- A particular invocation is given a subset P and the arrays X, sorted by x-co-ordinate and Y, sorted by y-co-ordinate.
- **2** Consider forming Y_L, Y_R from Y. The same approach will then work for forming X_L, X_R from X.
- Having partitioned P into P_L, P_R , we must form arrays Y_L, Y_R , sorted by y-co-ordinate (in linear time).
- Think of this as the opposite of MERGE: split a sorted array into two sorted arrays.
- **\bigcirc** Examine the points in Y in order.
- If a point Y[i] is in P_L , then append it to Y_L ; otherwise append it to Y_R .

Analysis of $T(n) = 2T\left(\frac{n}{2}\right) + dn\log n$

- We guess that $T(n) \in \Theta(n \log^2 n)$.
- Provide a straight of the second s
- S As in CLRS, we ignore boundary conditions, since they do not affect the order of the growth.

Proof that $T(n) \in O(n \log^2 n)$

- **()** Assume that *n* is even, and that the bound holds for $\frac{n}{2}$.
- **2** Suppose that there exists a constant c > 0 and an n_0 such that, for all $n \ge n_0$,

$$T\left(\frac{n}{2}\right) \le c\left(\frac{n}{2}\right)\log^2\left(\frac{n}{2}\right).$$

Then substituting into the recurrence yields

$$T(n) = 2T\left(\frac{n}{2}\right) + dn\log n$$

$$\leq 2\left[c\left(\frac{n}{2}\right)\log^2\left(\frac{n}{2}\right)\right] + dn\log n$$

$$= cn\left(\log n - \log 2\right)^2 + dn\log n$$

$$= cn\left(\log n - 1\right)^2 + dn\log n$$

$$= cn\left(\log^2 n - 2\log n + 1\right) + dn\log n$$

$$= cn\log^2 n + cn(1 - 2\log n) + dn\log n$$

$$\leq cn\log^2 n,$$

provided $cn(1 - 2\log n) + dn\log n \le 0$, which will hold provided

$$c \geq \frac{d\log n}{2\log n - 1} \geq \frac{d\log n}{2\log n} = \frac{d}{2}.$$

Proof that $T(n) \in \Omega(n \log^2 n)$

Suppose that there exists a constant c > 0 and an n_0 such that, for all $n \ge n_0$,

$$c\left(\frac{n}{2}\right)\log^2\left(\frac{n}{2}\right) \le T\left(\frac{n}{2}\right).$$

Then substituting into the recurrence yields

$$T(n) = 2T\left(\frac{n}{2}\right) + dn\log n$$

$$\geq 2\left[c\left(\frac{n}{2}\right)\log^2\left(\frac{n}{2}\right)\right] + dn\log n$$

$$= cn\left(\log n - \log 2\right)^2 + dn\log n$$

$$= cn\left(\log n - 1\right)^2 + dn\log n$$

$$= cn\left(\log^2 n - 2\log n + 1\right) + dn\log n$$

$$= cn\log^2 n + cn(1 - 2\log n) + dn\log n$$

$$\geq cn\log^2 n,$$

provided $cn(1 - 2\log n) + dn\log n \ge 0$, which will hold provided

$$c \leq \frac{d\log n}{2\log n - 1} \leq \frac{d\log n}{2\log n - \log n} = d.$$