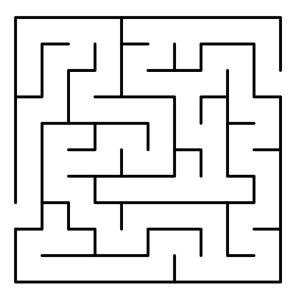
CS 341: Algorithms Lec 06: Depth First Search

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

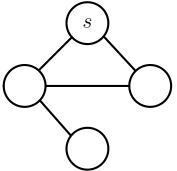


Going depth-first

The idea:

- travel as deep as possible, as long as you can
- when you can't go further, backtrack.

DFS implementations are based on stacks, either implicitly (recursion) or explicitly (as with queues for BFS).



Recursive algorithm

DFS(G)
G: a graph with n vertices, given by adjacency lists
1. let visited be an array of size n , with all entries set to false
2. for all v in G
3. if visited $[v]$ is false
4. $explore(v)$

```
explore(v)1.visited[v] = true2.for all w neighbour of v do3.if visited[w] = false4.explore(w)
```

Remark: can add parent array as in BFS

The white path lemma

Claim ("white path lemma")

When we start exploring a vertex v, any w that can be connected to v by an **unvisited** path will be visited during **explore**(v).

Proof. Let $v_0 = v, \ldots, v_k = w$ be a path $v \rightsquigarrow w$, with v_1, \ldots, v_k not visited. We prove all v_i 's are visited before **explore**(v) is finished.

True for i = 0. Suppose true for i < k. When we visit v_i , **explore**(v) is not finished, and v_{i+1} is one of its neighbours.

- if visited[v_{i+1}] is true when we reach Step 3 OK: it means we visited it
- else, we will visit it just now

OK: it will be done before explore(v) is finished

In any case, by induction assumption, it happens during explore(v).

Another basic property

Claim

If w is visited during explore(v), there is a path $v \rightsquigarrow w$.

Proof. Same as for BFS.

Previous properties: after we call **explore** at v_1, \ldots, v_k in **DFS**, we have visited exactly the connected components containing v_1, \ldots, v_k

Shortest paths: no

Runtime: still O(n+m)

Trees, forest, ancestors and descendants

Previous observation:

• DFS(G) gives a partition of G into vertex-disjoint rooted trees T_1, \ldots, T_k (DFS forest)

Definition. Suppose the DFS forest is T_1, \ldots, T_k and let u, v be two vertices

- u is an **ancestor** of v if they are on the same T_i and u is on the path root $\rightsquigarrow v$
- equivalent: v is a **descendant** of u

Key property

Claim

All edges in G connect a vertex to one of its descendants or ancestors.

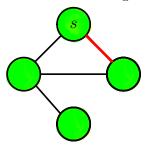
Proof. Let $\{v, w\}$ be an edge, and suppose we visit v first.

Then when we visit v, (v, w) is an unvisited path between v and w, so w will become a descendant of v (white path lemma)

Back edges

Definition.

• a **back edge** is an edge in *G* connecting an ancestor to a descendant, which is **not** a tree edge.



Observation

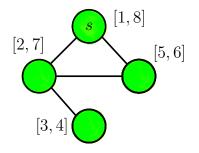
All edges are either tree edges or back edges (key property).

Start and finish times

Set a variable t to 1 initially, create two arrays start and finish, and change explore:

```
explore(v)
      visited[v] = \mathbf{true}
1.
    \mathsf{start}[v] = t
2.
3.
    t++
    for all w neighbour of v do
4.
5.
            if visited[w] = false
                 explore(w)
6.
7.
       finish[v] = t
       t++
8.
```

Example



Observation:

• these intervals are either contained in one another, or disjoint

Observation:

 if start[u] < start[v], then either finish[u] < start[v] or finish[v] < finish[u].

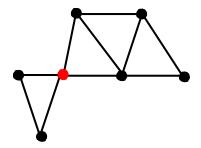
Proof: if start[v] < finish[u], we push v on the stack while u is still there, so we pop v before we pop u.

Cut vertices

Cut vertices

Definition: for G connected, a vertex v in G is a cut vertex if removing v (and all edges that contain it) makes G disconnected.

Also called articulation points



Finding the cut vertices (G connected)

Setup: we start from a rooted DFS tree T, knowing parent and level.

Warm-up

The root s is a cut vertex if and only if it has more than one child.

Proof.

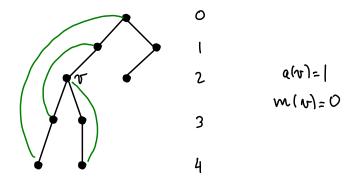
- if s has one child, removing s leaves T connected. So s not a cut vertex.
- suppose s has subtrees $S_1, \ldots, S_k, k > 1$.

Key property: no edge connecting S_i to S_j for $i \neq j$. So removing *s* creates *k* connected components.

Finding the cut vertices (G connected)

Definition: for a vertex v, let

- $a(v) = \min\{\operatorname{level}[w] : \{v, w\} \text{ edge}\}$
- $m(v) = \min\{a(w): w \text{ descendant of } v\}$



Using the values m(v)

Claim

For any v (except the root), v is a cut vertex if and only if it has a child w with $m(w) \ge \text{level}[v]$.

Proof

- Take a child w of v, let T_w be the subtree at w. Let also T_v be the subtree at v.
- If m(w) < |evel[v]|, then there is an edge from T_w to a vertex above v. After removing v, T_w remains connected to the root.
- If $m(w) \ge \text{level}[v]$, then all edges originating from T_w end in T_v .

Proof: any edge originating from a vertex x in T_w ends at a level at least |evel[v]|, and connects x to one of its ancestors or descendants (key property)

Computing the values m(v)Observation:

• if v has children w_1, \ldots, w_k , then $m(v) = \min\{a(v), m(w_1), \ldots, m(w_k)\}$

Conclusion:

- computing a(v) is $O(d_v)$ $d_v = degree of v$
- knowing all $m(w_1), \ldots, m(w_k)$, we get m(v) in $O(d_v)$
- so all values m(v) can be computed in O(m)
 (remember O(n + m) = O(m) when G connected)
- testing the cut-vertex condition at v is $O(d_v)$
- testing all v is O(m)

Exercise

write the pseudo-code