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Going depth-first

The idea:
o travel as deep as possible, as long as you can

e when you can’t go further, backtrack.

DFS implementations are based on stacks, either implicitly
(recursion) or explicitly (as with queues for BFS).

A. Jamshidpey, C. Roberts (CS,UW) Lec 06: Depth First Search Winter 2024 3/18



Recursive algorithm

DFS(G)
G: a graph with n vertices, given by adjacency lists
1. let visited be an array of size n, with all entries set to false
2 for allvin G
3. if visited[v] is false
4 explore(v)

explore(v)

1. visited[v] = true

2 for all w neighbour of v do

3. if visited[w] = false

4 explore(w)

Remark: can add parent array as in BFS
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The white path lemma

Claim (“white path lemma”)

When we start exploring a vertex v, any w that can be
connected to v by an unvisited path will be visited during
explore(v).

Proof. Let vg = v,...,vx = w be a path v ~ w, with
v1,. ..,V not visited. We prove all v;’s are visited before
explore(v) is finished.

True for ¢ = 0. Suppose true for i < k. When we visit v;,
explore(v) is not finished, and v;1; is one of its neighbours.
e if visited[v;41] is true when we reach Step 3
OK: it means we visited it
o else, we will visit it just now
OK: it will be done before explore(v) is finished

In any case, by induction assumption, it happens during explore(v).
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Another basic property

If w is visited during explore(v), there is a path v ~ w.

Proof. Same as for BFS.
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Consequences

Previous properties: after we call explore at v1,..., v, in DFS, we
have visited exactly the connected components containing
Viy.ooy Vg

Shortest paths: no

Runtime: still O(n 4+ m)
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Trees, forest, ancestors and descendants

Previous observation:

e DFS(G) gives a partition of G into vertex-disjoint rooted
trees 11, ..., Ty, (DFS forest)

Definition. Suppose the DFS forest is T1,...,T; and let u,v be
two vertices

@ u is an ancestor of v if they are on the same T; and u is on
the path root ~» v

@ equivalent: v is a descendant of u
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Key property

All edges in G' connect a vertex to one of its descendants
or ancestors.

Proof. Let {v,w} be an edge, and suppose we visit v first.

Then when we visit v, (v,w) is an unvisited path between v and
w, so w will become a descendant of v (white path lemma)
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Back edges

Definition.

@ a back edge is an edge in G connecting an ancestor to a
descendant, which is not a tree edge.

All edges are either tree edges or back edges (key property).

A. Jamshidpey, C. Roberts (CS,UW) Lec 06: Depth First Search



Start and finish times

Set a variable t to 1 initially, create two arrays start and finish,
and change explore:

explore(v)

1. visited[v] = true

2. start[v] =t

3. t++

4. for all w neighbour of v do
5. if visited[w] = false

6. explore(w)

7. finish[v] = ¢

8. t++
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Example

Observation:
o these intervals are either contained in one another, or
disjoint
Observation:
o if start[u] < start[v], then either finish[u] < start[v] or
finish[v] < finish[u].
Proof: if start[v] < finish[u], we push v on the stack while u is

still there, so we pop v before we pop u.
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Cut vertices
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Cut vertices

Definition: for GG connected, a vertex v in G is a cut vertex if
removing v (and all edges that contain it) makes G
disconnected.

Also called articulation points
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Finding the cut vertices (G connected)

Setup: we start from a rooted DFS tree T', knowing parent and
level.

The root s is a cut vertex if and only if it has more than
one child.

Proof.

o if s has one child, removing s leaves T" connected. So s not
a cut vertex.

@ suppose s has subtrees Sy,...,Sg, k > 1.

Key property: no edge connecting S; to S; for ¢ # j. So
removing s creates k connected components.
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Finding the cut vertices (G connected)

Definition: for a vertex v, let

e a(v) = min{level[w] : {v,w} edge}

e m(v) = min{a(w) : w descendant of v}
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Using the values m(v)

Claim

For any v (except the root), v is a cut vertex if and only
if it has a child w with m(w) > level[v].

Proof
o Take a child w of v, let T}, be the subtree at w. Let also T,
be the subtree at v.

o If m(w) < level[v], then there is an edge from Ty, to a
vertex above v. After removing v, T, remains connected to
the root.

o If m(w) > level[v], then all edges originating from T}, end in
Ty.

Proof: any edge originating from a vertex x in T, ends at a
level at least level[v], and connects x to one of its ancestors
or descendants (key property)
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Computing the values m(v)
Observation:

o if v has children w1, ..., wg, then
m(v) = min{a(v), m(w1),...,m(wg)}

Conclusion:
e computing a(v) is O(d,) d, = degree of v
e knowing all m(wy),...,m(wg), we get m(v) in O(d,)

e so all values m(v) can be computed in O(m)
(remember O(n 4+ m) = O(m) when G connected)

e testing the cut-vertex condition at v is O(d,)

e testing all v is O(m)

write the pseudo-code
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