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Going depth-first

The idea:

travel as deep as possible, as long as you can

when you can’t go further, backtrack.

DFS implementations are based on stacks, either implicitly
(recursion) or explicitly (as with queues for BFS).
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Recursive algorithm

DFS(G)
G: a graph with n vertices, given by adjacency lists
1. let visited be an array of size n, with all entries set to false
2. for all v in G
3. if visited[v] is false
4. explore(v)

explore(v)
1. visited[v] = true
2. for all w neighbour of v do
3. if visited[w] = false
4. explore(w)

Remark: can add parent array as in BFS
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The white path lemma

Claim (“white path lemma”)

When we start exploring a vertex v, any w that can be
connected to v by an unvisited path will be visited during
explore(v).

Proof. Let v0 = v, . . . , vk = w be a path v ; w, with
v1, . . . , vk not visited. We prove all vi’s are visited before
explore(v) is finished.

True for i = 0. Suppose true for i < k. When we visit vi,
explore(v) is not finished, and vi+1 is one of its neighbours.

if visited[vi+1] is true when we reach Step 3

OK: it means we visited it

else, we will visit it just now

OK: it will be done before explore(v) is finished

In any case, by induction assumption, it happens during explore(v).
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Another basic property

Claim

If w is visited during explore(v), there is a path v ; w.

Proof. Same as for BFS.
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Consequences

Previous properties: after we call explore at v1, . . . , vk in DFS, we
have visited exactly the connected components containing
v1, . . . , vk

Shortest paths: no

Runtime: still O(n + m)
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Trees, forest, ancestors and descendants

Previous observation:

DFS(G) gives a partition of G into vertex-disjoint rooted
trees T1, . . . , Tk (DFS forest)

Definition. Suppose the DFS forest is T1, . . . , Tk and let u, v be
two vertices

u is an ancestor of v if they are on the same Ti and u is on
the path root ; v

equivalent: v is a descendant of u
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Key property

Claim

All edges in G connect a vertex to one of its descendants
or ancestors.

Proof. Let {v, w} be an edge, and suppose we visit v first.

Then when we visit v, (v, w) is an unvisited path between v and
w, so w will become a descendant of v (white path lemma)
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Back edges

Definition.

a back edge is an edge in G connecting an ancestor to a
descendant, which is not a tree edge.

s

Observation

All edges are either tree edges or back edges (key property).
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Start and finish times

Set a variable t to 1 initially, create two arrays start and finish,
and change explore:

explore(v)
1. visited[v] = true
2. start[v] = t
3. t++
4. for all w neighbour of v do
5. if visited[w] = false
6. explore(w)
7. finish[v] = t
8. t++
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Example

s [1, 8]

[2, 7]

[3, 4]

[5, 6]

Observation:

these intervals are either contained in one another, or
disjoint

Observation:

if start[u] < start[v], then either finish[u] < start[v] or
finish[v] < finish[u].

Proof: if start[v] < finish[u], we push v on the stack while u is
still there, so we pop v before we pop u.
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Cut vertices
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Cut vertices

Definition: for G connected, a vertex v in G is a cut vertex if
removing v (and all edges that contain it) makes G
disconnected.

Also called articulation points
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Finding the cut vertices (G connected)

Setup: we start from a rooted DFS tree T , knowing parent and
level.

Warm-up

The root s is a cut vertex if and only if it has more than
one child.

Proof.

if s has one child, removing s leaves T connected. So s not
a cut vertex.

suppose s has subtrees S1, . . . , Sk, k > 1.

Key property: no edge connecting Si to Sj for i ̸= j. So
removing s creates k connected components.

A. Jamshidpey, C. Roberts (CS,UW) Lec 06: Depth First Search Winter 2024 15 / 18



Finding the cut vertices (G connected)

Definition: for a vertex v, let

a(v) = min{level[w] : {v, w} edge}

m(v) = min{a(w) : w descendant of v}
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Using the values m(v)

Claim

For any v (except the root), v is a cut vertex if and only
if it has a child w with m(w) ≥ level[v].

Proof

Take a child w of v, let Tw be the subtree at w. Let also Tv

be the subtree at v.

If m(w) < level[v], then there is an edge from Tw to a
vertex above v. After removing v, Tw remains connected to
the root.

If m(w) ≥ level[v], then all edges originating from Tw end in
Tv.

Proof: any edge originating from a vertex x in Tw ends at a
level at least level[v], and connects x to one of its ancestors
or descendants (key property)

So after removing v, Tw is disconnected from the root
(except if v is the root)
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Computing the values m(v)
Observation:

if v has children w1, . . . , wk, then
m(v) = min{a(v),m(w1), . . . ,m(wk)}

Conclusion:

computing a(v) is O(dv) dv = degree of v

knowing all m(w1), . . . ,m(wk), we get m(v) in O(dv)

so all values m(v) can be computed in O(m)
(remember O(n+m) = O(m) when G connected)

testing the cut-vertex condition at v is O(dv)

testing all v is O(m)

Exercise

write the pseudo-code
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