
CS 341: Algorithms
Lec 07: Directed Graphs

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost
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Directed graphs basics

Definition:

G = (V,E) as in the undirected case, with the difference
that edges are (directed) pairs (v, w)

▶ edges also called arcs
▶ v is the source node, w is the target

a path is a sequence v1, . . . , vk of vertices, with (vi, vi+1) in
E for all i. k = 1 is OK.

a cycle is a path v1, . . . , vk, v1, k ≥ 2

a directed acyclic graph (DAG) is a directed graph with no
cycle
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Directed graphs basics

Definition:

the in-degree of v is the number of edges of the form (u, v)

the out-degree of v is the number of edges of the form (v, w)

Data structures

adjacency lists

adjacency matrix (not symmetric anymore)
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BFS and DFS for directed graphs

The algorithms work without any change. We will focus on DFS.
Still true:

we obtain a partition of V into vertex-disjoint trees
T1, . . . , Tk

when we start exploring a vertex v, any w with an unvisited
path v ; w becomes a descendant of v (white path lemma)

properties of start and finish times

But there can exist edges connecting the trees Ti
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Classification of edges
Suppose we have a DFS forest. Edges of G are one of the
following:

tree edges

back edges: from descendant to ancestor
forward edges: from ancestor to descendant (but not tree
edge)
cross edges: all others

back
forward
cross

(depends on the order of vertices we chose in the main DFS
loop)
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Classification of edges

explore(v)
1. visited[v] = true
2. start[v] = t, t++
3. for all w neighbour of v do
4. if visited[w] = false
5. explore(w) (v, w) tree edge
6. finish[v] = t, t++

If w was visited:

if w not finished, (v, w) back edge

else if start[v] < start[w] < finish[w], (v, w) forward edge

else start[w] < finish[w] < start[v], (v, w) cross edge
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Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS
forest

Proof

Suppose there is a back edge (v, w). Then v is a descendant
of w, so there is a path w ; v, and a cycle w ; v → w

Suppose there is a cycle v1, . . . , vk−1, vk = v1. Up to
renumbering, assume we find v1 first in the DFS.

Starting from v1, we will reach vk−1 (white path lemma).
We check the edge (vk−1, v1), and v1 is not finished. So
back edge.

Consequence: acyclicity test in O(n + m)
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Topological ordering

Definition: Suppose G = (V,E) is a DAG. A topological order is
an ordering < of V such that for any edge (v, w), we have
v < w.

No such order if there are cycles.
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From a DFS forest

[1, 2]

[3, 4] [1, 4]

[2, 3]

Observation:

start times do not help

finish times do, but we have to reverse their order
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From a DFS forest

Claim

Suppose that V is ordered using the reverse of the finishing
order: v < w ⇐⇒ finish[w] < finish[v].

This is a topological order.

Proof. Have to prove: for any edge (v, w), finish[w] < finish[v].

if we discover v before w, w will become a descendant of v
(white path lemma), and we finish exploring it before we
finish v.

if we discover w before v, because there is no path w ; v
(G is a DAG), we will finish w before we start v.

Consequence: topological order in O(n + m).
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Strong connectivity

Definition. A directed graph G is strongly connected if for all
v, w in G, there is a path v ; w (and thus a path w ; v).

Observation

G is strongly connected iff there exists s such that for all
w, there are paths s ; w and w ; s.

Proof.

=⇒ is obvious.

For ⇐= , take vertices v, w. We have paths v ; s and
s ; w, so v ; w. Same thing with w ; v.
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Testing strong connectivity

Algorithm:

call explore twice, starting from a same vertex s

edges reversed the second time

Correctness:

first run tells whether for all v, there is a path s ; v

second one tells whether for all v, there is a path s ; v in
the reverse graph (which is a path v ; s in G)

Consequence: test in O(n + m)
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Structure of directed graphs

Definition: a strongly connected component of G is

a subgraph of G

which is strongly connected

but not contained in a larger strongly connected subgraph
of G.

Exercise

The vertices of strongly connected components form a par-
tition of V .

Exercise

v and w are in the same strongly connected component if
and only if there are paths v ; w and w ; v.
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Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly
connected components.
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Kosaraju’s algorithm for strongly connected components
Definition: for a directed graph G = (V,E), the reverse (or
transpose) graph GT = (V,ET ) is the graph with same vertices,
and reversed edges.

SCC(G)
1. run a DFS on G and record finish times
2. run a DFS on GT , with vertices ordered in decreasing finish time
3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)

Exercise

check that the strongly connected components of G and
GT are the same
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Correctness
Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of
G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 =⇒ 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

Let s be the first vertex of C that we visit in the DFS of GT

there is a path s ; v in GT

all vertices on this path are in C (easy)

so they are all unvisited when we arrive at s

so v becomes a descendant of s white path lemma

same for w
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Correctness

Proof of 2 =⇒ 1.

Let T be the tree in the DFS forest of GT that contains v and
w, with root s

We prove that for every vertex t in T , s and t are in the same

strongly connected component of G.

(1) for all t in T , there is a path s ; t in GT , so there is a
path t ; s in G

(2) now we prove: for all t in T , t is a descendant of s in the
DFS forest of G (this gives a path s ; t in G)
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Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.

By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [ ( ) ]
(2) start[u] < finish[u] < start[s] < finish[s] ( ) [ ]

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G
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