CS 341: Algorithms
Lec 07: Directed Graphs

Armin Jamshidpey Collin Roberts

Based on lecture notes by Eric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Lec 07: Directed Graphs Winter 2025

1/18

Directed graphs basics

Definition:
e G = (V,E) as in the undirected case, with the difference
that edges are (directed) pairs (v, w)

» edges also called arcs
» v is the source node, w is the target

e a path is a sequence vy, ..., vy of vertices, with (v;, viy1) in
E for all i. k=1 1is OK.
@ a cycle is a path vy,...,vg,v1, k> 2

e a directed acyclic graph (DAG) is a directed graph with no
cycle

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 2/18

Directed graphs basics

Definition:

o the in-degree of v is the number of edges of the form (u,v)

o the out-degree of v is the number of edges of the form (v, w)
Data structures

e adjacency lists

e adjacency matrix (not symmetric anymore)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 3/18

BFS and DFS for directed graphs

The algorithms work without any change. We will focus on DFS.
Still true:

@ we obtain a partition of V into vertex-disjoint trees
T, ..., Ty

o when we start exploring a vertex v, any w with an unvisited
path v ~ w becomes a descendant of v (white path lemma)

@ properties of start and finish times

But there can exist edges connecting the trees T;

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 4/18

Classification of edges
Suppose we have a DFS forest. Edges of G are one of the
following;:
@ tree edges
@ back edges: from descendant to ancestor
o forward edges: from ancestor to descendant (but not tree
edge)
cross edges: all others

back

A)\ /\‘ forward
Cross
%

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 5/18

Classification of edges

explore(v)

1. visited[v] = true

2. start[v] = ¢, t++

3. for all w neighbour of v do

4. if visited[w] = false

5. explore(w) (v, w) tree edge
6. finish[v] = ¢, t++

If w was visited:
e if w not finished, (v, w) back edge
e else if start[v] < start[w] < finish[w], (v, w) forward edge

e else start[w] < finish[w] < start[v], (v, w) cross edge

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 6/18

Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS
forest

Proof

@ Suppose there is a back edge (v, w). Then v is a descendant
of w, so there is a path w ~» v, and a cycle w ~ v = w

@ Suppose there is a cycle v1,...,v_1,v = v1. Up to
renumbering, assume we find v; first in the DFS.

Starting from vy, we will reach vi_; (white path lemma).
We check the edge (vg_1,v1), and v is not finished. So
back edge.

Consequence: acyclicity test in O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 7/18

Topological ordering
Definition: Suppose G = (V, E) is a DAG. A topological order is

an ordering < of V' such that for any edge (v, w), we have
v < w.

wl\u‘k Qgﬁs
DS,

X OILS "0 a0
@@

No such order if there are cycles.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 8/18

From a DFS forest

Observation:
o start times do not help

o finish times do, but we have to reverse their order

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 9/18

From a DFS forest

Claim

Suppose that V is ordered using the reverse of the finishing
order: v < w <= finish[w] < finish{v].

This is a topological order.
Proof. Have to prove: for any edge (v, w), finish[w]| < finish[v].

o if we discover v before w, w will become a descendant of v
(white path lemma), and we finish exploring it before we
finish v.

o if we discover w before v, because there is no path w~» v
(G is a DAG), we will finish w before we start v.

Consequence: topological order in O(n + m).

10/ 18

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025

Strong connectivity

Definition. A directed graph G is strongly connected if for all
v,w in G, there is a path v ~ w (and thus a path w ~ v).

G is strongly connected iff there exists s such that for all
w, there are paths s ~ w and w ~» s.

Proof.

@ — is obvious.

o For <=, take vertices v, w. We have paths v ~» s and
§~ w, S0 v~ w. Same thing with w ~» v.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs

Testing strong connectivity

Algorithm:
o call explore twice, starting from a same vertex s

@ edges reversed the second time

Correctness:
o first run tells whether for all v, there is a path s~ v

o second one tells whether for all v, there is a path s~ v in
the reverse graph (which is a path v ~ s in G)

Consequence: test in O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 12 /18

Structure of directed graphs

Definition: a strongly connected component of G is
@ a subgraph of G
@ which is strongly connected

@ but not contained in a larger strongly connected subgraph
of G.

The vertices of strongly connected components form a par-
tition of V.

v and w are in the same strongly connected component if
and only if there are paths v ~ w and w ~» v.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly
connected components.

h
L o 0

(_____.L/_
S——

E)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 14 /18

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly
connected components.

o

o

Ja

«——8&

"

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 14 /18

Kosaraju’s algorithm for strongly connected components

Definition: for a directed graph G = (V, E), the reverse (or
transpose) graph G7 = (V, ET) is the graph with same vertices,
and reversed edges.

SCC(Q)
1. run a DFS on G and record finish times
2. run a DFS on G7, with vertices ordered in decreasing finish time

3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)

Exercise

check that the strongly connected components of G and
GT are the same

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 15 /18

Correctness

Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of

G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 16 /18

Correctness

Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of

G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 = 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 16 /18

Correctness
Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of

G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 = 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

Let s be the first vertex of C' that we visit in the DFS of GT

e there is a path s ~» v in GT

e all vertices on this path are in C' (easy)
@ so they are all unvisited when we arrive at s
@ so v becomes a descendant of s white path lemma

@ same for w

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 16 /18

Correctness

Proof of 2 — 1.
Let T be the tree in the DFS forest of GT that contains v and

w, with root s

We prove that for every vertex ¢ in 7T', s and ¢ are in the same
strongly connected component of G.

17 /18

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025

Correctness

Proof of 2 — 1.
Let T be the tree in the DFS forest of GT that contains v and

w, with root s

We prove that for every vertex ¢ in 7T', s and ¢ are in the same

strongly connected component of G.

(1) for all ¢ in T, there is a path s ~» ¢ in GT, so there is a
patht ~» sin G

17 /18

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025

Correctness

Proof of 2 — 1.
Let T be the tree in the DFS forest of GT that contains v and

w, with root s

We prove that for every vertex ¢ in 7T', s and ¢ are in the same

strongly connected component of G.

(1) for all ¢ in T, there is a path s ~» ¢ in GT, so there is a
patht ~» sin G

(2) now we prove: for all ¢ in T', ¢ is a descendant of s in the
DFS forest of G (this gives a path s ~ ¢ in G)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 17 /18

Correctness

Want to prove: for all ¢t in T, t is a descendant of s in the DFS
forest of G.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs

Correctness
Want to prove: for all ¢ in T, t is a descendant of s in the DFS
forest of GG.
By induction: suppose it is true for some ¢ in 7', and prove it is
true for its children. So let w be a child of ¢ in T'.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs

Correctness

Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in 7', and prove it is
true for its children. So let u be a child of ¢ in T
o start[s] < start[t] < finish[t] < finish[s] induction assumption
e by definition of s, finish[u] < finish[s]

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 18 /18

Correctness

Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in 7', and prove it is
true for its children. So let u be a child of ¢ in T
o start[s] < start[t] < finish[t] < finish[s] induction assumption
e by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () 1]

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 18 /18

Correctness
Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in T', and prove it is
true for its children. So let u be a child of ¢ in T'.
o start[s] < start[t] < finish[t] < finish[s] induction assumption
e by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () 1]
e if (2), with our induction assumption, we get
start[u] < start[t]
e since (t,u) is in 7', (u,t) is in G. With previous item, we
get: t is a descendant of w in the DFS of G (white path)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 18 /18

Correctness

Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in T', and prove it is

true
o
°

for its children. So let u be a child of ¢ in 7.
start[s] < start[t] < finish[t] < finish[s] induction assumption

by definition of s, finish{u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () 1]

if (2), with our induction assumption, we get

start[u] < start[t]

since (t,u) is in T', (u,t) is in G. With previous item, we
get: t is a descendant of w in the DFS of G (white path)
this gives start[u] < start[t] < finish[t] < finish[u]

A. Jamshidpey,

C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 18 /18

Correctness
Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in T', and prove it is
true for its children. So let u be a child of ¢ in T'.
o start[s] < start[t] < finish[t] < finish[s] induction assumption
e by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () 1]
e if (2), with our induction assumption, we get
start[u] < start[t]
e since (t,u) is in 7', (u,t) is in G. With previous item, we
get: t is a descendant of w in the DFS of G (white path)
e this gives start[u| < start[t] < finish[t] < finish[u]
e but also finish[u] < start[s] < start[t] from (2) and
induction assumption

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs ‘Winter 2025 18 /18

Correctness
Want to prove: for all ¢t in T, ¢ is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some ¢ in T', and prove it is
true for its children. So let u be a child of ¢ in T
o start[s] < start[t] < finish[t] < finish[s] induction assumption
@ by definition of s, finish{u] < finish[s|, so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () 1]
e if (2), with our induction assumption, we get
start[u] < start]t]
@ since (t,u) is in T', (u,t) is in G. With previous item, we
get: t is a descendant of w in the DFS of G (white path)
e this gives start[u| < start[t] < finish[t] < finish[u]
e but also finish[u] < start[s] < start[t] from (2) and
induction assumption
@ 50 (2) impossible, and we must have (1)
o shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025

18 /18

