
CS 341: Algorithms
Lec 07: Directed Graphs

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 1 / 18

Directed graphs basics

Definition:

G = (V,E) as in the undirected case, with the difference
that edges are (directed) pairs (v, w)

▶ edges also called arcs
▶ v is the source node, w is the target

a path is a sequence v1, . . . , vk of vertices, with (vi, vi+1) in
E for all i. k = 1 is OK.

a cycle is a path v1, . . . , vk, v1, k ≥ 2

a directed acyclic graph (DAG) is a directed graph with no
cycle

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 2 / 18

Directed graphs basics

Definition:

the in-degree of v is the number of edges of the form (u, v)

the out-degree of v is the number of edges of the form (v, w)

Data structures

adjacency lists

adjacency matrix (not symmetric anymore)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 3 / 18

BFS and DFS for directed graphs

The algorithms work without any change. We will focus on DFS.
Still true:

we obtain a partition of V into vertex-disjoint trees
T1, . . . , Tk

when we start exploring a vertex v, any w with an unvisited
path v ; w becomes a descendant of v (white path lemma)

properties of start and finish times

But there can exist edges connecting the trees Ti

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 4 / 18

Classification of edges
Suppose we have a DFS forest. Edges of G are one of the
following:

tree edges

back edges: from descendant to ancestor
forward edges: from ancestor to descendant (but not tree
edge)
cross edges: all others

back
forward
cross

(depends on the order of vertices we chose in the main DFS
loop)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 5 / 18

Classification of edges

explore(v)
1. visited[v] = true
2. start[v] = t, t++
3. for all w neighbour of v do
4. if visited[w] = false
5. explore(w) (v, w) tree edge
6. finish[v] = t, t++

If w was visited:

if w not finished, (v, w) back edge

else if start[v] < start[w] < finish[w], (v, w) forward edge

else start[w] < finish[w] < start[v], (v, w) cross edge

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 6 / 18

Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS
forest

Proof

Suppose there is a back edge (v, w). Then v is a descendant
of w, so there is a path w ; v, and a cycle w ; v → w

Suppose there is a cycle v1, . . . , vk−1, vk = v1. Up to
renumbering, assume we find v1 first in the DFS.

Starting from v1, we will reach vk−1 (white path lemma).
We check the edge (vk−1, v1), and v1 is not finished. So
back edge.

Consequence: acyclicity test in O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 7 / 18

Topological ordering

Definition: Suppose G = (V,E) is a DAG. A topological order is
an ordering < of V such that for any edge (v, w), we have
v < w.

No such order if there are cycles.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 8 / 18

From a DFS forest

[1, 2]

[3, 4] [1, 4]

[2, 3]

Observation:

start times do not help

finish times do, but we have to reverse their order

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 9 / 18

From a DFS forest

Claim

Suppose that V is ordered using the reverse of the finishing
order: v < w ⇐⇒ finish[w] < finish[v].

This is a topological order.

Proof. Have to prove: for any edge (v, w), finish[w] < finish[v].

if we discover v before w, w will become a descendant of v
(white path lemma), and we finish exploring it before we
finish v.

if we discover w before v, because there is no path w ; v
(G is a DAG), we will finish w before we start v.

Consequence: topological order in O(n + m).

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 10 / 18

Strong connectivity

Definition. A directed graph G is strongly connected if for all
v, w in G, there is a path v ; w (and thus a path w ; v).

Observation

G is strongly connected iff there exists s such that for all
w, there are paths s ; w and w ; s.

Proof.

=⇒ is obvious.

For ⇐= , take vertices v, w. We have paths v ; s and
s ; w, so v ; w. Same thing with w ; v.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 11 / 18

Testing strong connectivity

Algorithm:

call explore twice, starting from a same vertex s

edges reversed the second time

Correctness:

first run tells whether for all v, there is a path s ; v

second one tells whether for all v, there is a path s ; v in
the reverse graph (which is a path v ; s in G)

Consequence: test in O(n + m)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 12 / 18

Structure of directed graphs

Definition: a strongly connected component of G is

a subgraph of G

which is strongly connected

but not contained in a larger strongly connected subgraph
of G.

Exercise

The vertices of strongly connected components form a par-
tition of V .

Exercise

v and w are in the same strongly connected component if
and only if there are paths v ; w and w ; v.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 13 / 18

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly
connected components.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 14 / 18

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly
connected components.

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 14 / 18

Kosaraju’s algorithm for strongly connected components
Definition: for a directed graph G = (V,E), the reverse (or
transpose) graph GT = (V,ET) is the graph with same vertices,
and reversed edges.

SCC(G)
1. run a DFS on G and record finish times
2. run a DFS on GT , with vertices ordered in decreasing finish time
3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)

Exercise

check that the strongly connected components of G and
GT are the same

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 15 / 18

Correctness
Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of
G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 =⇒ 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

Let s be the first vertex of C that we visit in the DFS of GT

there is a path s ; v in GT

all vertices on this path are in C (easy)

so they are all unvisited when we arrive at s

so v becomes a descendant of s white path lemma

same for w

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 16 / 18

Correctness
Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of
G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 =⇒ 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

Let s be the first vertex of C that we visit in the DFS of GT

there is a path s ; v in GT

all vertices on this path are in C (easy)

so they are all unvisited when we arrive at s

so v becomes a descendant of s white path lemma

same for w

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 16 / 18

Correctness
Want to prove: for any vertices v, w, the following are
equivalent.

(1) v and w are in the same strongly connected component of
G

(2) v and w are in the same tree in the DFS forest of GT (with
vertices ordered in decreasing finish time)

Proof of 1 =⇒ 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains
v and w

Let s be the first vertex of C that we visit in the DFS of GT

there is a path s ; v in GT

all vertices on this path are in C (easy)

so they are all unvisited when we arrive at s

so v becomes a descendant of s white path lemma

same for w
A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 16 / 18

Correctness

Proof of 2 =⇒ 1.

Let T be the tree in the DFS forest of GT that contains v and
w, with root s

We prove that for every vertex t in T , s and t are in the same

strongly connected component of G.

(1) for all t in T , there is a path s ; t in GT , so there is a
path t ; s in G

(2) now we prove: for all t in T , t is a descendant of s in the
DFS forest of G (this gives a path s ; t in G)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 17 / 18

Correctness

Proof of 2 =⇒ 1.

Let T be the tree in the DFS forest of GT that contains v and
w, with root s

We prove that for every vertex t in T , s and t are in the same

strongly connected component of G.

(1) for all t in T , there is a path s ; t in GT , so there is a
path t ; s in G

(2) now we prove: for all t in T , t is a descendant of s in the
DFS forest of G (this gives a path s ; t in G)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 17 / 18

Correctness

Proof of 2 =⇒ 1.

Let T be the tree in the DFS forest of GT that contains v and
w, with root s

We prove that for every vertex t in T , s and t are in the same

strongly connected component of G.

(1) for all t in T , there is a path s ; t in GT , so there is a
path t ; s in G

(2) now we prove: for all t in T , t is a descendant of s in the
DFS forest of G (this gives a path s ; t in G)

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 17 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.

By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s]

, so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G

A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

Correctness
Want to prove: for all t in T , t is a descendant of s in the DFS
forest of G.
By induction: suppose it is true for some t in T , and prove it is
true for its children. So let u be a child of t in T .

start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption
by definition of s, finish[u] < finish[s], so our options are
(1) start[s] < start[u] < finish[u] < finish[s] [()]
(2) start[u] < finish[u] < start[s] < finish[s] () []

if (2), with our induction assumption, we get
start[u] < start[t]

since (t, u) is in T , (u, t) is in G. With previous item, we
get: t is a descendant of u in the DFS of G (white path)

this gives start[u] < start[t] < finish[t] < finish[u]

but also finish[u] < start[s] < start[t] from (2) and
induction assumption

so (2) impossible, and we must have (1)

shows that u is a descendant of s in the DFS forest of G
A. Jamshidpey, C. Roberts (CS,UW) Lec 07: Directed Graphs Winter 2025 18 / 18

