CS 341: Algorithms Lec 09:Minimum Spanning Trees

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Spanning trees

Definition:

- G = (V, E) is a connected graph
- a spanning tree in G is a tree of the form (V, A), with A a subset of E
- in other words: a tree with edges from E that covers all vertices
- examples: BFS tree, DFS tree

Now, suppose the edges have weights $w(e_i)$

Goal:

 $\bullet\ a\ spanning\ tree\ with\ minimal\ weight$

Kruskal's algorithm

Augmenting sets without cycles

Claim

Let G be a connected graph, and let A be a subset of the edges of G.

If (V, A) has no cycle and |A| < n - 1, then one can find an edge e not in A such that $A \cup \{e\}$ still has no cycle.

Augmenting sets without cycles

Claim

Let G be a connected graph, and let A be a subset of the edges of G. If (V, A) has no cycle and |A| < n - 1, then one can find an edge e not in A such that $A \cup \{e\}$ still has no cycle.

Proof

- in any graph, #vertices #con. comp. $\leq \#$ edges
- for (V, A), this gives n c < n 1 so c > 1
- take any edge on a path that connects two components.

Properties of the output

Claim

If the output is $A = [e_1, \ldots, e_r]$, then (V, A) is a spanning tree (and r = n - 1)

Proof:

- of course, (V, A) has no cycle.
- suppose (V, A) is not a spanning tree. Then, there exists an edge e not in A, such that $(V, A \cup \{e\})$ still has no cycle.
- Case 1: $w(e) < w(e_1)$. Impossible, since e_1 is the element with the smallest weight.
- Case 2: $w(e_i) < w(e) < w(e_{i+1})$. Impossible: at the moment we inserted e_{i+1} , we decided not to include e. This means that e created a loop with e_1, \ldots, e_i .
- Case 3: w(e_r) < w(e). Impossible: we would have included it in A, since there is no loop in A ∪ {e}.

Exchanging edges

Claim

Let (V, A) and (V, T) be two spanning trees, and let e be an edge in T but not in A.

Then there exists an edge e' in A but not in T such that (V, T + e' - e) is still a spanning tree. **Bonus:** e' is on the cycle that e creates in A.

Proof:

- write $e = \{v, w\}$
- (V, A + e) contains a cycle $c = v, w, \dots, v$
- removing e from T splits (V, T e) into two connected components T_1, T_2
- c starts in T_1 , crosses over to T_2 , so it contains another edge e' between T_2 and T_1
- e' is in A, but not in T
- (V, T + e' e) is a spanning tree

Correctness: exchange argument

- let A be the output of the algorithm
- let (V,T) be any spanning tree
- if $T \neq A$, let e be an edge in T but not in A
- so there is an edge e' in A but not in T such that
 (V, T + e' − e) is a spanning tree, and e' is on the cycle that e creates in A
- during the algorithm, we considered e but rejected it, because it created a cycle in A
- all other elements in this cycle have smaller (or equal) weight
- so $w(e') \leq w(e)$
- so T' = T + e' e has weight $\leq w(T)$, and one more common element with A
- keep going

Data structures

Operations on disjoint sets of vertices:

- Find: identify which set contains a given vertex
- Union: replace two sets by their union

```
\begin{array}{lll} \textbf{GreedyMST\_UnionFind}(G) \\ 1. & T \leftarrow [ \ ] \\ 2. & U \leftarrow \{\{v_1\}, \ldots, \{v_n\}\} \\ 3. & \text{sort edges by increasing weight} \\ 4. & \textbf{for } k = 1, \ldots, m \textbf{ do} \\ 5. & \textbf{if } U.\text{Find}(e_k.1) \neq U.\text{Find}(e_k.2) \textbf{ then} \\ 6. & U.\text{Union}(U.\text{Find}(e_k.1), U.\text{Find}(e_k.2)) \\ 7. & \text{append } e_k \textbf{ to } T \end{array}
```


- U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

- U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

X = [1, 1, 3, 4, 5]

- U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

X = [1, 1, 3, 3, 5]

- U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

X = [5, 5, 3, 3, 5]

- U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

X = [3, 3, 3, 3, 3]

Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists, updates corresponding entries of X, concatenates two linked lists. Worst case Θ(n)

Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists, updates corresponding entries of X, concatenates two linked lists. Worst case Θ(n)

Kruskal's algorithm:

- sorting edges $O(m \log(m))$
- $\bullet \ O(m)$ Find
- $\bullet \ O(n^2) \ {\rm Union}$

```
Worst case O(m \log(m) + n^2)
```

A simple heuristics for Union

Modified Union

- $\bullet\,$ each set in U keeps track of its size
- only traverse the smaller list
- also add a pointer to the **trail** of the lists to concatenate in O(1)

A simple heuristics for Union

Modified Union

- $\bullet\,$ each set in U keeps track of its size
- only traverse the smaller list
- also add a pointer to the **trail** of the lists to concatenate in O(1)

Key observation: worst case for one union still $\Theta(n)$, but better total time.

- for any given vertex v, the size of the set containing v at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the **total** cost of union per vertex is $O(\log(n))$

A simple heuristics for Union

Modified Union

- $\bullet\,$ each set in U keeps track of its size
- only traverse the smaller list
- also add a pointer to the trail of the lists to concatenate in O(1)

Key observation: worst case for one union still $\Theta(n)$, but better total time.

- for any given vertex v, the size of the set containing v at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the **total** cost of union per vertex is $O(\log(n))$

Conclusion: $O(n \log(n))$ for all unions and $O(m \log(m))$ total