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Spanning trees

Definition:

G = (V,E) is a connected graph

a spanning tree in G is a tree of the form (V,A), with A a
subset of E

in other words: a tree with edges from E that covers all
vertices

examples: BFS tree, DFS tree

Now, suppose the edges have weights w(ei)

Goal:

a spanning tree with minimal weight
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Kruskal’s algorithm

GreedyMST(G)
1. A← [ ]
2. sort edges by increasing weight
3. for k = 1, . . . ,m do
4. if ek does not create a cycle in A then
5. append ek to A
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Augmenting sets without cycles

Claim

Let G be a connected graph, and let A be a subset of the
edges of G.

If (V,A) has no cycle and |A| < n − 1, then one can find
an edge e not in A such that A ∪ {e} still has no cycle.

Proof

in any graph, #vertices − #con. comp. ≤ #edges

for (V,A), this gives n − c < n − 1 so c > 1

take any edge on a path that connects two components.
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Properties of the output

Claim

If the output is A = [e1, . . . , er], then (V,A) is a spanning
tree (and r = n− 1)

Proof:

of course, (V,A) has no cycle.

suppose (V,A) is not a spanning tree. Then, there exists an
edge e not in A, such that (V,A ∪ {e}) still has no cycle.

Case 1: w(e) < w(e1). Impossible, since e1 is the element
with the smallest weight.

Case 2: w(ei) < w(e) < w(ei+1). Impossible: at the
moment we inserted ei+1, we decided not to include e. This
means that e created a loop with e1, . . . , ei.

Case 3: w(er) < w(e). Impossible: we would have
included it in A, since there is no loop in A ∪ {e}.
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Exchanging edges

Claim

Let (V,A) and (V, T ) be two spanning trees, and let e be
an edge in T but not in A.

Then there exists an edge e′ in A but not in T such that
(V, T + e′ − e) is still a spanning tree. Bonus: e′ is on the
cycle that e creates in A.

Proof:

write e = {v, w}
(V,A+ e) contains a cycle c = v, w, . . . , v
removing e from T splits (V, T − e) into two connected
components T1, T2

c starts in T1, crosses over to T2, so it contains another
edge e′ between T2 and T1

e′ is in A, but not in T
(V, T + e′ − e) is a spanning tree
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Correctness: exchange argument
let A be the output of the algorithm

let (V, T ) be any spanning tree

if T ̸= A, let e be an edge in T but not in A

so there is an edge e′ in A but not in T such that
(V, T + e′ − e) is a spanning tree, and e′ is on the cycle
that e creates in A

during the algorithm, we considered e but rejected it,
because it created a cycle in A

all other elements in this cycle have smaller (or equal)
weight

so w(e′) ≤ w(e)

so T ′ = T + e′ − e has weight ≤ w(T ), and one more

common element with A

keep going
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Merging connected sets of vertices
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Data structures

Operations on disjoint sets of vertices:

Find: identify which set contains a given vertex

Union: replace two sets by their union

GreedyMST UnionFind(G)
1. T ← [ ]
2. U ← {{v1}, . . . , {vn}}
3. sort edges by increasing weight
4. for k = 1, . . . ,m do
5. if U.Find(ek.1) ̸= U.Find(ek.2) then
6. U.Union(U.Find(ek.1), U.Find(ek.2))
7. append ek to T
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An OK solution

U is an array of linked lists

1 2 3 4 5
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An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1 2 3 4 5

X = [1, 2, 3, 4, 5]
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An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [5, 5, 3, 3, 5]
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An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [3, 3, 3, 3, 3]
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Analysis

Worst case:

Find is O(1)

Union traverses one of the linked lists, updates
corresponding entries of X, concatenates two linked lists.
Worst case Θ(n)

Kruskal’s algorithm:

sorting edges O(m log(m))

O(m) Find

O(n2) Union

Worst case O(m log(m) + n2)
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A simple heuristics for Union

Modified Union

each set in U keeps track of its size

only traverse the smaller list

also add a pointer to the trail of the lists to concatenate in
O(1)

Key observation: worst case for one union still Θ(n), but better
total time.

for any given vertex v, the size of the set containing v at

least doubles when we update X[v]

so X[v] updated at most log(n) times

so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total
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