
CS 341: Algorithms
Lec 09:Minimum Spanning Trees

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 1 / 13

Spanning trees

Definition:

G = (V,E) is a connected graph

a spanning tree in G is a tree of the form (V,A), with A a
subset of E

in other words: a tree with edges from E that covers all
vertices

examples: BFS tree, DFS tree

Now, suppose the edges have weights w(ei)

Goal:

a spanning tree with minimal weight

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 2 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Example

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 3 / 13

Kruskal’s algorithm

GreedyMST(G)
1. A← []
2. sort edges by increasing weight
3. for k = 1, . . . ,m do
4. if ek does not create a cycle in A then
5. append ek to A

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 4 / 13

Augmenting sets without cycles

Claim

Let G be a connected graph, and let A be a subset of the
edges of G.

If (V,A) has no cycle and |A| < n − 1, then one can find
an edge e not in A such that A ∪ {e} still has no cycle.

Proof

in any graph, #vertices − #con. comp. ≤ #edges

for (V,A), this gives n − c < n − 1 so c > 1

take any edge on a path that connects two components.

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 5 / 13

Augmenting sets without cycles

Claim

Let G be a connected graph, and let A be a subset of the
edges of G.

If (V,A) has no cycle and |A| < n − 1, then one can find
an edge e not in A such that A ∪ {e} still has no cycle.

Proof

in any graph, #vertices − #con. comp. ≤ #edges

for (V,A), this gives n − c < n − 1 so c > 1

take any edge on a path that connects two components.

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 5 / 13

Properties of the output

Claim

If the output is A = [e1, . . . , er], then (V,A) is a spanning
tree (and r = n− 1)

Proof:

of course, (V,A) has no cycle.

suppose (V,A) is not a spanning tree. Then, there exists an
edge e not in A, such that (V,A ∪ {e}) still has no cycle.

Case 1: w(e) < w(e1). Impossible, since e1 is the element
with the smallest weight.

Case 2: w(ei) < w(e) < w(ei+1). Impossible: at the
moment we inserted ei+1, we decided not to include e. This
means that e created a loop with e1, . . . , ei.

Case 3: w(er) < w(e). Impossible: we would have
included it in A, since there is no loop in A ∪ {e}.

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 6 / 13

Exchanging edges

Claim

Let (V,A) and (V, T) be two spanning trees, and let e be
an edge in T but not in A.

Then there exists an edge e′ in A but not in T such that
(V, T + e′ − e) is still a spanning tree. Bonus: e′ is on the
cycle that e creates in A.

Proof:

write e = {v, w}
(V,A+ e) contains a cycle c = v, w, . . . , v
removing e from T splits (V, T − e) into two connected
components T1, T2

c starts in T1, crosses over to T2, so it contains another
edge e′ between T2 and T1

e′ is in A, but not in T
(V, T + e′ − e) is a spanning tree

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 7 / 13

Correctness: exchange argument
let A be the output of the algorithm

let (V, T) be any spanning tree

if T ̸= A, let e be an edge in T but not in A

so there is an edge e′ in A but not in T such that
(V, T + e′ − e) is a spanning tree, and e′ is on the cycle
that e creates in A

during the algorithm, we considered e but rejected it,
because it created a cycle in A

all other elements in this cycle have smaller (or equal)
weight

so w(e′) ≤ w(e)

so T ′ = T + e′ − e has weight ≤ w(T), and one more

common element with A

keep going

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 8 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 9 / 13

Data structures

Operations on disjoint sets of vertices:

Find: identify which set contains a given vertex

Union: replace two sets by their union

GreedyMST UnionFind(G)
1. T ← []
2. U ← {{v1}, . . . , {vn}}
3. sort edges by increasing weight
4. for k = 1, . . . ,m do
5. if U.Find(ek.1) ̸= U.Find(ek.2) then
6. U.Union(U.Find(ek.1), U.Find(ek.2))
7. append ek to T

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 10 / 13

An OK solution

U is an array of linked lists

1 2 3 4 5

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

1

2

3 4 5

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

1

2

3

4

5

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

1

2

3

4

5

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

1

2

3

4

5

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1 2 3 4 5

X = [1, 2, 3, 4, 5]

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3 4 5

X = [1, 1, 3, 4, 5]

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [1, 1, 3, 3, 5]

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [5, 5, 3, 3, 5]

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

An OK solution

U is an array of linked lists

to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [3, 3, 3, 3, 3]

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 11 / 13

Analysis

Worst case:

Find is O(1)

Union traverses one of the linked lists, updates
corresponding entries of X, concatenates two linked lists.
Worst case Θ(n)

Kruskal’s algorithm:

sorting edges O(m log(m))

O(m) Find

O(n2) Union

Worst case O(m log(m) + n2)

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 12 / 13

Analysis

Worst case:

Find is O(1)

Union traverses one of the linked lists, updates
corresponding entries of X, concatenates two linked lists.
Worst case Θ(n)

Kruskal’s algorithm:

sorting edges O(m log(m))

O(m) Find

O(n2) Union

Worst case O(m log(m) + n2)

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 12 / 13

A simple heuristics for Union

Modified Union

each set in U keeps track of its size

only traverse the smaller list

also add a pointer to the trail of the lists to concatenate in
O(1)

Key observation: worst case for one union still Θ(n), but better
total time.

for any given vertex v, the size of the set containing v at

least doubles when we update X[v]

so X[v] updated at most log(n) times

so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 13 / 13

A simple heuristics for Union

Modified Union

each set in U keeps track of its size

only traverse the smaller list

also add a pointer to the trail of the lists to concatenate in
O(1)

Key observation: worst case for one union still Θ(n), but better
total time.

for any given vertex v, the size of the set containing v at

least doubles when we update X[v]

so X[v] updated at most log(n) times

so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 13 / 13

A simple heuristics for Union

Modified Union

each set in U keeps track of its size

only traverse the smaller list

also add a pointer to the trail of the lists to concatenate in
O(1)

Key observation: worst case for one union still Θ(n), but better
total time.

for any given vertex v, the size of the set containing v at

least doubles when we update X[v]

so X[v] updated at most log(n) times

so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

A. Jamshidpey C. Roberts (CS, UW)Lec 09: Minimum Spanning Trees Winter 2025 13 / 13

