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Goals

This module: the greedy paradigm through examples

interval scheduling

interval coloring

minimizing total completion time

Dijsktra’s algorithm (already covered)

minimum spanning trees (already covered)

Computational model:

word RAM

assume all weights, capacities, deadlines, etc, fit in a word
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Greedy algorithms

Context: we are trying to solve a combinatorial optimization
problem:

have a large, but finite, domain D
want to find an element E in D that minimizes / maximizes
a cost function

Greedy strategy:

build E step-by-step

don’t think ahead, just try to improve as much as you can
at every step

simple algorithms

but usually, no guarantee to get the optimal

it is often hard to prove correctness, and easy to prove
incorrectness.
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Example: Huffman

Review from CS240: the Huffman tree

we are given frequencies f1, . . . , fn for characters c1, . . . , cn

we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.

create many single-letter trees

define the frequency of a tree as the sum of the frequencies
of the letters in it

build the final tree by putting together smaller trees: join
the two trees with the least frequencies

Claim: this minimizes
∑

i fi × {length of encoding of ci}
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Interval Scheduling

Interval Scheduling Problem

Input: n intervals [s1, f1], [s2, f2], . . . , [sn, fn].
Output a maximal subset of disjoint intervals.
By disjoint intervals we mean [si, fi] ∩ [sj , fj ] = ∅.

Example:

Example: A car rental company has the following requests for a
given day:

I1: 2pm to 8pm
I2: 3pm to 4pm
I3: 5pm to 6pm

Answer is S = [I2, I3].
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Greedy Strategies

Consider earliest starting time (Choose the interval with
mini si).

Consider shortest interval (choose the interval with
mini{fi − si}).
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Greedy Strategies

Consider minimum conflicts (choose the interval that
overlaps with the minimum number of other intervals.

Consider earliest finishing time (Choose the interval with
mini fi).
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Algorithm: Interval Scheduling

1 S = ∅
2 Sort the intervals such that f1 ≤ f2 ≤ · · · ≤ fn
3 For i from 1 to n do

if interval i, [si, fi], has no conflicts with intervals in S
add i to S

4 return S
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Correctness: The Greedy Algorithm Stays Ahead

Assume O is an optimal solution. Our goal is to show |S| = |O|.

Suppose i1, i2, . . . , ik are the intervals in S in the order
they were added to |S| by the greedy algorithm.

Similarly, let the intervals in O are denoted by j1, . . . , jm.
▶ Assume that the intervals in O are ordered in the order of

the start and finish times.

We prove that k = m.
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Correctness: The Greedy Algorithm Stays Ahead

Lemma

For all indices r ≤ k we have f(ir) ≤ f(jr).

Proof: We use induction

For r = 1 the statement is true.

Suppose r > 1 and the statement is true for r − 1. We will
show that the statement is true for r.

By induction hypothesis we have f(ir−1) ≤ f(jr−1).

By the order on O we have f(jr−1) < s(jr).

Hence we have f(ir−1) < s(jr).

Thus at the time the greedy algorithm chose ir, the
interval jr was a possible choice.

The greedy algorithm chooses an interval with the smallest
finish time. So, f(ir) ≤ f(jr).
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Correctness: The Greedy Algorithm Stays Ahead

Theorem

The greedy algorithm returns an optimal solution

Proof:

Prove by contradiction.

if the output S is not optimal, then |S| < |O|.
ik is the last interval in S and O must have an interval jk+1.

Apply the previous lemma with r = k, and we get
f(ik) ≤ f(jk).

We have f(ik) ≤ f(jk) < s(jk+1).

So, jk+1 was a possible choice to add to S by the greedy
algorithm. This is a contradiction.
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Interval Coloring

Interval Coloring Problem

Input: n intervals [s1, f1], [s2, f2], . . . , [sn, fn]
Output: use the minimum number of colors to color the
intervals, so that each interval gets one color and two
overlapping intervals get two different colors.

Example:
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Algorithm: Interval Coloring

1 Sort the intervals by starting time: s1 ≤ s2 ≤ . . . ≤ sn
2 For i from 1 to n do

Use the minimum available color ci to color the
interval i. (i.e. use the minimum number to color
the interval i so that it doesn’t conflict with the
colors of the intervals that are already colored.)
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Correctness

Assume the greedy algorithm uses k colors. To prove the
correctness, we show that there are no other way to solve the
problem using at most k − 1 colors.

Proof of correctness:

Suppose interval ℓ is the first interval to use the color k.

Interval ℓ overlaps with intervals with colors 1, . . . , k − 1.

Call these intervals [si1 , fi1 ], [si2 , fi2 ], . . . , [sik−1
, fik−1

]

For 1 ≤ j ≤ k − 1 we have sij ≤ sℓ.

All the intervals overlap with [sℓ, fℓ]

Since all these intervals overlap with [sℓ, fℓ], we also have
sℓ ≤ fij for 1 ≤ j ≤ k − 1.

Hence sℓ is a time contained in k intervals.

so, there is no k − 1 coloring.
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Minimizing Total Completion Time

The problem

Input: n jobs, each requiring processing time pi
Output: An ordering of the jobs such that the total
completion time is minimized.

Note: The completion time of a job is defined as the time when
it is finished.
Example: n = 5, processing times [2, 8, 1, 10, 5]

Algorithm:

order the jobs in non-decreasing processing times
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Correctness: Exchange Argument

let L = [e1, . . . , en] be an optimal solution (as a
permutation of [1, . . . , n])

suppose that L is not in non-decreasing order of processing
times

so there exists i such that t(ei) > t(ei+1)

sum of the completion times of L is
nt(e1) + (n − 1)t(e2) + · · · + t(en)

the contribution of ei and ei+1 is
(n − i + 1)t(ei) + (n − i)t(ei+1)

now, switch ei and ei+1 to get a permutation L′

their contribution becomes
(n − i + 1)t(ei+1) + (n − i)t(ei)

nothing else changes so
T (L′) − T (L) = t(ei+1) − t(ei) < 0

contradiction
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