
Module 3 Divide and Conquer

Some slides borrowed from CS 240.
Thanks to Anna Lubiw and other previous CS 341 instructors.

Divide and Conquer Algorithm Basics
Examples from previous courses
Recurrence Relations
Solving Recurrences by Recursion Tree
Solving Recurrences with the Substitution Method (“Lucky Guess”)
More Examples
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Divide and Conquer Algorithm Basics

In previous courses, we covered a few Divide and Conquer algorithms but
maybe didn’t specifically define the term.

Divide and Conquer algorithms are broken into 3 basic steps:
1 Divide - break the problem into smaller instances of the problem
2 Recurse - use recursion to solve the smaller problems
3 Conquer - combine the results of the smaller problems to solve the

initial larger problem
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Examples from previous courses

Binary Search: Search for an element k in a sorted array A.
Note: we may have implemented this iteratively but it has a natural
recursive implementation as well.

Compute the middle index m of A and compare with k.
If k = A[m] then return FOUND
Else If k is smaller than A[m] then recurse on left half of A
Else (k is larger than A[m]) so recurse on right half of A

Binary Search only recurses on one of the subproblems and simply returns
what the subproblem returns.

Analysis (worst-case): T (n) = 1 + T (n/2) but this assumes n always
divides evenly.
Rigorously, T (n) = 1 + max{T (⌊n/2⌋), T (⌈n/2⌉)}.
These resolve to: T (n) ∈ O(log n).
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Examples from previous courses - Sorting

QuickSort(A):
Partition array based on a given pivot ⇒ O(n) work to divide.
2 Subproblems: Pivot divides A into Left and right subarrays, recurse
on both.
Conquer step is easy - does nothing if algorithm is "in-place".

Analysis:
Worst-case: T (n) = O(n) + T (n − 1) ∈ O(n2)
Best-case: T (n) = O(n) + 2T (n/2) ∈ O(n log n)
Average Case: O(n log n)
Randomized (each pivot choice is equally likely): Expected O(n log n)
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Examples from previous courses - Sorting

MergeSort(A):
Divide array into left and right halves.
2 Subproblems: Left and right half subarrays, recurse on both.
Merge the two sorted arrays ⇒ O(n) work to conquer.

Analysis:
Best-case/Worst-case: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Rigorously, T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
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Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30



Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30



Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30



Recursion Tree for MergeSort

T (n) = 2T (n/2) + cn, if n is even
T (1) = 0, if counting number of comparisons

Recursion Tree where n is a power of 2:

Total work in the recursion tree sums to: c · n log n

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 7 / 30



Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.
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Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n,∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...
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Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn,∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k,∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.
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Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1
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Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))
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Example
Some websites attempt to make suggestions (or target advertising) to you
based on matching you with previous users and observing what they were
interested in.

Similarity of users is based on similarity of preferences. Given a set of
items A, B, C , D, a user ranks them by most favourite to least favourite.

Given 2 rankings, how do you compare similarity?

Ranking 1: B D C A

Ranking 2: A D B C

How many exact matches are there? 1 (only D at the same index)
Maybe try ordering of pairs? How many pairs of distinct items?

(4
2
)

= 6

Are these 2 rankings similar? How many pairs (X , Y ) have the same order?
2 : Both prefer B over C and D over C → pairs BC and CD.
Not very similar - 4 pairs are inverted: AB AC AD BD, not very similar .
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Example: Counting Inversions
Problem
Counting Inversions
Instance: Given 2 rankings of items {a1, . . . , an}
Find: The number of inverted pairs of items between the rankings; i.e.
pairs where one ranking prefers ai over aj but the other prefers aj over ai .

Observe: If we draw edges between the same items in both rankings, the
number of edge crossings is the number of inversions.

An equivalent formulation is to assign numbers to each item, then
compare the order of numbers. For simplicity, assign the numbers in order
to the first ranking:
B D C A ⇒ 1 2 3 4

Using the same mapping, the second ranking becomes:
A D B C ⇒ 4 2 1 3
The problem of counting the number of inversions now becomes ...
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Example: Counting Inversions
The problem of counting the number of inversions now becomes:
count the number of pairs that are out of order in the 2nd list.

Brute Force:

Check all
(n

2
)

pairs, requires O(n2) time.
Does sorting help? Not really since we check all pairs.

Divide and Conquer Method: Given a list L = a1, . . . , an of numbers,
count the number of inversions.

Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?
r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj
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Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?
r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj
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Example: Counting Inversions

How do we find r?

Count: For each aj ∈ B, count the number of items, rj , in A that are
larger than aj ; i.e. r =

∑
aj ∈B

rj

Now, it would help if A and B are sorted and also, for the combine step to
return a sorted list. Think about how we can modify mergesort to
compute r ; modify the merge process.

When aj is copied into the merged list (combined sorted list), determine rj
and add to r .
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Example: Counting Inversions

Algorithm: Sort-and-Count(L) returns a sorted L and number of
inversions.

Divide L at midpoint into A and B
Sort-and-Count(A) returns (sorted A, rA)
Sort-and-Count(B) returns (sorted B, rB)
r ← 0
Merge(A, B) and when an element of B is chosen to merge,
r ← r + number of elements remaining in A
return (sorted A ∪ B, rA + rB + r)

Analysis:

Similar to mergesort: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Better Algorithms?
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Common Recurrences
We often see recurrences of the form:

T (n) = aT (n
b ) + cnk

Example: Mergesort k = 1, a = 2, b = 2

T (n) = 2T (n
2 ) + cn ∈ O(n log n)

Example: k = 1, a = 1, b = 2

T (n) = T (n
2 ) + cn ∈ O(n)

Example: k = 1, a = 4, b = 2

T (n) = 4T (n
2 ) + cn ∈ O(n2)
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Master Theorem

Theorem: Given
T (n) = aT (n

b ) + cnk

where a ≥ 1, b > 1, c > 0, k ≥ 0, then

T (n) ∈


Θ(nk) if a < bk i.e. logb a < k
Θ(nk log n) if a = bk

Θ(nlogb a) if a > bk

Proof: For a rigorous proof, use induction.
Less rigorous, think about the recursion tree.
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Multiplying Large Numbers
Recall: grade 2 method ⇒ multiplying two n−digit numbers ∈ O(n2)
How about an n−digit number with an m−digit number? Exercise

Divide and Conquer Method:
Idea: Split numbers in half (by digits), multiply smaller components.
Easier if both have same number of digits ⇒ pad with 0 if necessary.

Example: Multiply 667 (0667) with 1234
06|67× 12|34 becomes the sum of:

06× 12⇒ 720000 (72 shifted 4 digits)
06× 34⇒ 20400 (204 shifted 2 digits)
67× 12⇒ 80400 (804 shifted 2 digits)
67× 34⇒ 2278
Total sum: 823078

Use recursion until numbers are small enough: 0|6× 1|2, etc
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Multiplying Large Numbers

Analysis: T (n) = 4T (n/2) + O(n)
Apply the Master Theorem: a = 4, b = 2, k = 1 and compare a with bk

⇒ 4 > 2, so Case 3: T (n) ∈ Θ(nlogb a)

∈ Θ(n2)
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Karatsuba’s Algorithm (1960)
Idea: Avoid one of the four multiplications!
Consider 0667× 1234 where w = 06, x = 67, y = 12, z = 34, then
wx × yz ⇒ w |x × y |z

= (102w + x)× (102y + z)
= 104wy + 102(wz + xy) + xz

Don’t need wz , xy individually, only the sum (wz + xy).

(w + x)× (y + z) = wy + (wz + xy) + xz
⇒ (wz + xy) = (w + x)× (y + z)− wy − xz
We already compute wy and xz . Only 3 multiplications.

Algorithm
p ⇒ wy
q ⇒ xz
r ⇒ (w + x)× (y + z)
return 104p + 102(r − p − q) + q
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Karatsuba’s Algorithm (1960)

Note: Additions are only linear in number of digits, O(n)

Analysis: T (n) = 3T (n/2) + O(n)

Master Theorem: a = 3, b = 2, k = 1 and compare a with bk

a = 3 > bk = 2, so Case 3: T (n) ∈ Θ(nlogb a)

T (n) ∈ Θ(nlogb a) = Θ(nlog2 3) ≈ Θ(n1.585)

Better Algorithms? Asymptotically faster methods for larger n.
Schönhage and Strassen (1971): O(n(log n)(log log n)) (often used)
More recent: O(n log n)
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Karatsuba’s Algorithm (1960)

Implementation Concerns
1 Numbers of different lengths - sometimes large differences.

Example: A has n digits, B has m digits and n≫ m.
Break A into O(n/m) blocks of m digits, e.g.

A = 342|3794|3749|4379|4297|7294|9742× 3422 = B

Multiply each block by B
Sum all products (remember to do the shifts)
Analysis: O((n/m)mlog2 3) or O(nm0.585)

2 Which base to use? Base 10 nice for humans. In practice, for
computers, Base 264.
Store large numbers as an array of 64-bit integers (unsigned long):

A = a0 + a1(226) + a2(226)2 + . . . + an−1(226)n−1

⇒ A = a0|a1|a2| . . . |an−1
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Multiplying Matrices

Problem
Matrix Multiplication
Instance: Two n by n matrices, A and B.
Question: Compute the n by n matrix product C = AB.

The naive algorithm (row by column for each of n2 locations) has
complexity Θ(n3).

Divide and Conquer: Divide into Submatrices of size n/2× n/2.
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Matrix Multiplication - Simple Divide and Conquer

A =
[

a b
c d

]
, B =

[
e f
g h

]
, C = AB =

[
r s
t u

]

If A, B are n by n matrices, then a, b, ..., h, r , s, t, u are n
2 by n

2 matrices,
where

r = a e + b g s = a f + b h
t = c e + d g u = c f + d h

requiring 8 multiplications of n
2 by n

2 matrices to compute C = AB.

Analysis: T (n) = 8T (n/2) + O(n2)
Master Theorem: a = 8, b = 2, k = 2 compare a = 8 > bk = 4
T (n) ∈ Θ(nlogb a) = Θ(n3)
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Strassen’s Algorithm (1969)
Idea: Similar to multiplication, algebraic genius (or trickery)!
⇒ 7 subproblems instead of 8 to compute C = AB!

Define

P1 = a(f − h) P2 = (a + b)h
P3 = (c + d)e P4 = d(g − e)
P5 = (a + d)(e + h) P6 = (b − d)(g + h)
P7 = (a − c)(e + f ).

Then, compute

r = P5 + P4 − P2 + P6 s = P1 + P2
t = P3 + P4 u = P5 + P1 − P3 − P7

Analysis: T (n) = 7T (n/2) + O(n2)
Master Theorem: a = 7, b = 2, k = 2 compare a = 7 > bk = 4
T (n) ∈ Θ(nlogb a) = Θ(nlog2 7) ≈ Θ(n2.808)
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Centrality of Matrix Multiplication
Suppose two n × n matrices can be multiplied in O(nω) where 2 ≤ ω ≤ 3.

Many other problems can also then be solved in O(nω):
Solving Ax = b
Determinant of A
Inverse of A, A−1

Many problems are at least as difficult as matrix multiplication.

Example: Reduction of triangular matrix inversion to matrix multiplication.
Compute the inverse of an n × n upper triangular matrix T .
Divide and Conquer: Decompose T into blocks of size n/2

Analysis: T (n) = 2T (n/2) + O(nω)
Master Theorem: a = 2, b = 2, k = ω and a = 2 < bk = 2ω ≥ 4
So, T (n) ∈ Θ(nω)

Also, Reduction of matrix multiplication to triangular matrix inversion.
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Finding the Closest Pair

Problem
Closest Pair
Instance: A set of n distinct points in the plane.
Find: Two distinct points p, q such that the distance between p and q,

d(p, q) =
√

(px − qx )2 + (py − qy )2

is minimized.

Brute Force: try all pairs, O(n2)
Special case: 1D (points on a line): sort and compare consecutive pairs:
O(n log n)
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Closest Pair - Divide and Conquer

Idea:
Divide points in half: left half Q, right half R, dividing line L
Recursively find closest pair in Q, R
Combine - must consider points with an endpoint on each side of L

Note: To divide points, it helps to sort by x-coord - once only!
Then extract the points you need in linear time (they will also be sorted).
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