Graph Algorithms
Single-source shortest path in DAG

Shortest paths are always well defined in a DAG, since there are no negative-weight cycle in a graph.

- If the DAG contains a path from \(u \) to \(v \), \(u \) precedes \(v \) in the topological sort.
- If \(u \) comes before \(v \) in the topological order, there is no path from \(v \) to \(u \).
Single-source shortest path in DAG

DAG-Shortest-Paths(G, s)

1. Topologically sort the vertices of G
2. $d[s] \leftarrow 0$
3. For each $v \in V - \{s\}$ do $d[v] \leftarrow \infty$
4. For each vertex u, taken in topologically sorted order
 1. For each $v \in Adj[u]$
 2. If $d[v] > d[u] + w(u, v)$ then $d[v] \leftarrow d[u] + w(u, v)$
Single-source shortest path in DAG: Example

Why is it working in graphs with negative edges?
Single-source shortest path in DAG: Runtime: $\Theta(V+E)$

DAG-Shortest-Paths(G, s)

Topologically sort the vertices of G

$d[s] \leftarrow 0$

for each $v \in V - \{s\}$

\[d[v] \leftarrow \infty \]

for each vertex u, taken in topologically sorted order

for each $v \in Adj[u]$

if $d[v] > d[u] + w(u, v)$

\[d[v] \leftarrow d[u] + w(u, v) \]
Single-source shortest path in DAG: Correctness

Theorem. When the algorithm terminates, \(d[v] = \delta(s, v) \) for all vertices \(v \in V \)

Proof.

- If \(v \) is not reachable from \(s \), then \(d[v] = \delta(s, v) = \infty \)
- If \(v \) is reachable from \(s \), there is a shortest path \(p=\langle v_0, v_1, \ldots, v_k \rangle \) where \(v_0 = s \) and \(v_k = v \).
- The algorithm process the vertices in topologically sorted order.
- Therefore, the edges on \(p \) are relaxed in the order \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k) \)
- We can prove by induction on the number of relaxation steps that \(d[v] = \delta(s, v) \)
Theorem. After the k-th edge of path p is relaxed, we have $d[v_k] = \delta(s, v_k)$

Proof by induction: induction on the number of relaxation steps.

Induction hypothesis: After the i-th edge of path p is relaxed, $d[v_i] = \delta(s, v_i)$

Base Case: i=0
- before any edge of p have been relaxed, we have $d[v_0] = d[s] = 0 = \delta(s, s)$

Induction step. Assuming $d[v_{i-1}] = \delta(s, v_{i-1})$ after the (i-1)-th edge was relaxed → we want to show that $d[v_i] = \delta(s, v_i)$ after the i-th edge is relaxed

- $d[v_i] \leq \delta(s, v_i)$
 - After relaxing edge (v_{i-1}, v_i), we have $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$
 - before relaxing the edge, there are two cases
 - $d[v_i] > d[v_{i-1}] + w(v_{i-1}, v_i)$ if this is the case the algorithm does the following
 - $d[v_i] = d[v_{i-1}] + w(v_{i-1}, v_i)$
 - $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$ if this is the case, no change happen and the property holds
 - $d[v_i] \leq \delta(s, v_{i-1}) + w(v_{i-1}, v_i) = \delta(s, v_i)$ (subpaths of shortest path are also shortest path)

- $d[v_i] \geq \delta(s, v_i)$

Therefore $d[v_i] = \delta(s, v_i)$
Theorem. \(d[v] \geq \delta(s, v) \) for all \(v \)

Proof by induction: induction on the number of relaxation steps.

Induction hypothesis: After \(j \) relaxation steps, \(d[v] \geq \delta(s, v) \) for all \(v \).

Base Case: after initialization, \(d[v] = \infty \rightarrow d[v] \geq \delta(s, v) \)
\(d[s] = 0 \geq \delta(s, s) = 0 \)

Induction step. Assuming that induction hypothesis is true for \(j \), we want to prove it is true for \(j+1 \):
Consider relaxation of edge \((u,v)\). There are two cases:

- \(d[v] \) does not change \(\rightarrow d[v] \geq \delta(s, v) \) (induction assumption)
- \(d[v] \) will change: \(d[v] = d[u] + w(u,v) \geq \delta(s, u) + w(u,v) \geq \delta(s, v) \)

Triangle inequality
Bellman-Ford Algorithm
Bellman-ford Algorithm

- If G has no negative cycles, then there exists a shortest path from s to any node u that uses at most n-1 edges.

Proof. Suppose there exists a shortest path from s to u consisting of n or more edges
 - A path of length at least n must visit at least n+1 nodes
 - There exists a node x that is repeated (pigeonhole principle) → There is a cycle C
 - Can remove C without increasing cost of path
Bellman-ford Algorithm

Intuition. Although Dijkstra’s algorithm may not compute all distances in one pass, it will compute the distance to some vertices correctly, e.g. first vertex on a shortest path.

How many iterations of dijkstra algorithm is required?

If there is no negative-weight cycle

- shortest path is a simple path
- Shortest path is of length at most n-1

→ At most n-1 iterations of Dijkstra is needed

→ Each iteration starts at the next node in the shortest path
Bellman-ford Algorithm: dynamic programming approach

- The problem has the optimal substructure property:
 - All subpaths of a shortest path are shortest paths.
- Can we solve the problem using dynamic programming?
- Can we solve the problem recursively?
- What is the subproblem?
Bellman-ford Algorithm: dynamic programming approach

- $P = \text{shortest path from } u \text{ to } v \text{ with at most } i \text{ edges}$
- $P = P' + (t, v)$
 - P': (shortest path from u to t with at most $i-1$ edge)
Bellman-ford Algorithm: dynamic programming approach

$D(i,v) =$ weight of a shortest path from s to v that uses at most i edges

- Goal $D(n-1, v)$ for each v
 - If there is no negative cycle, then there exists a shortest path that is simple

\[
D(i, v) = \min \left\{ D(i-1, v), \min_{(u,v) \in E} \{D(i-1, u) + w(u,v)\} \right\}
\]

- Shortest path uses at most $i-1$ edges
- Shortest path uses exactly i edges

$D(0, s) = 0$

$D(0, v) = \infty$ where $v \neq s$
Bellman-ford Algorithm: dynamic programming approach

For each node $v \in V$

$M[0, v] = \infty$

$M[0, s] = 0$

for $i = 1$ to $n - 1$

for each node $v \in V$

$M[i, v] = M[i - 1, v]$

for each edge $(u, v) \in E$:

$M[i, v] \leftarrow \min \{ M[i, v], M[i - 1, u] + w(u, v) \}$.

- Runtime: $O(nm)$
- Space Complexity: $O(n^2)$
 - Could be improved to $O(n)$
 - To compute $M[i, v]$ only $M[i-1,v]$ values are needed
Bellman-ford Algorithm: DP: example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D(0, v)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$D(1, v)$</td>
<td>0</td>
<td>-1</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$D(2, v)$</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$D(3, v)$</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>$D(4, v)$</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>

![Graph with nodes A, B, C, D, E and edges with weights 3, 2, 2, 5, -3, 1, 4, -1]
Bellman-ford algorithm: simple version

For each node $v \in V$
\[d[v] = \infty \]
\[d[s] = 0 \]
for $i = 1$ to $n - 1$
 for each edge $(u, v) \in E$
 If $d[v] > d[u] + w(u, v)$
 \[d[v] \leftarrow d[u] + w(u, v) \]
 \[\text{parent}[v] = u \]

- Re-use same $d[v]$
- Runtime: $O(nm)$
- Space Complexity: $O(n)$
- The set of $\{v, \text{parent}[v]\}$ form a shortest path tree
- Allows to recover path s to v backward from v
- How to detect negative weight cycle reachable from s
 - Run 1 more iteration and see if any d value changes
Bellman-ford algorithm: Proof of correctness

Theorem. At the end, $D(n-1, v)$ is the cost of the shortest path from s to v with at most $n-1$ edges for all $v \in V$

Proof. Proof by induction.

Induction hypothesis. $D(k, v)$ is the cost of the shortest path from s to v with at most k edges for all $v \in V$

Base Case: $i=0$

Induction step: Assuming $D(i-1, v)$ is the cost of the shortest path from s to v with at most $i-1$ edges for all $v \in V$, prove that $D(i, v)$ is the cost of the shortest path from s to v with at most i edges for all $v \in V$
Detecting negative cycles

- Given a directed graph $G=(V,E)$ with edge-weights w_e (can be negative), determine if G contains a negative cycle.
- We reduce this to a slightly different problem and will use Bellman-Ford algorithm to solve it.
- **Problem.** Given G and source s, find if there is negative cycle on a path from s to v for any node v.
Negative Cycles

Claim 1. If there is a negative cycle on a \(s \rightarrow t \) path, then \(D(k, v) \rightarrow -\infty \) as \(k \rightarrow \infty \) for some \(v \in V \)

Example: \(D(t, 3) = -1, D(t, 6) = -4, D(t, 9) = -7 \)
Negative Cycles

- **Claim 2.** If the graph does not have any negative cycle, then $D(n, v) = D(n-1, v)$ for all $v \in V$
 - **Proof.** Any cycle is non-negative, so we can assume that any shortest path from s to v has no cycle and thus it is of length at most $n-1$

- **Claim 3.** If $D(n, v) = D(n-1, v)$ for all $v \in V$, then the graph has no negative cycles
 - **Proof.** We can show that $D(k, v)$ is finite when k goes to infinity for all $v \in V$
 - By claim 1, there are no negative cycles in graph

- A graph has no negative cycles iff $D(n, v) = D(n-1, v)$ for all $v \in V$
 - →There is an $O(mn)$ algorithm for checking
Algorithm for detecting Negative Cycles

- **Lemma.** If $D(n, v) < D(n-1, v)$ for some v, then any shortest path from s to v contains a negative cycle.

- **Proof.** by contradiction.
 - Suppose G does not contain a negative cycle.
 - Since $D(n, v) < D(n-1, v)$, the shortest path from s to v has exactly n edges.
 - Otherwise, $D(n, v) = D(n-1, v)$ (according to the algorithm).
 - By pigeonhole principle, a path of length n must have a repeated vertex, and thus a cycle c.
 - We claim that C must be a negative cycle.
 - If C has non-negative weight, removing it would give us a shortest path with less than n edges → contradiction: the path contained exactly n edges.

- **there is a negative cycle. How do we find it?**
Algorithm for detecting Negative Cycles

- So, to detect a negative cycle reachable from s:
 - We run one more iteration, and check if any \(d \) value changes.
 - By tracing out the parents using the stored information, we can find \(P \) and thus the cycle \(C \).

This gives an \(O(mn) \) time algorithm to find a negative cycle, using \(\theta(n^2) \) space.
All pairs shortest path problem

- **Input.**
 - A directed graph $G = (V, E)$ with a weight on each edge
 - The edge weight could be negative, but there is not negative-weight cycle
- **Output:** The shortest path distance from u to v for all pairs of $u,v \in V$.

- **Brute-force solution.**
 - Apply Bellman-Ford on each node $u \in V$
 - **Runtime** = (n. mn) = $O(n^2m)$
 - **Floyd-Warshall** algorithm: $O(n^3)$
All pairs shortest path problem: First solution

- Subproblem is a path to the predecessor node. To find the optimal solution, we try all possible predecessor nodes x

$$D_i(u, v) = \min \begin{cases} D_{i-1}(u, v) \\ \min_{x \in V} \{D_{i-1}(u, x) + w(x, v)\} \end{cases}$$

- Shortest path uses at most $i-1$ edges
- Shortest path uses exactly i edges

$$D_i(u, v) = \min_{x \in V} \{D_{i-1}(u, x) + w(x, v)\}$$

$$D_0(u, u) = 0$$

$$D_0(u, v) = \infty \text{ where } u \neq v$$

$$D_0(u, v) = w(u, v) \text{ where } (u, v) \in E$$

Runtime: $O(n^4)$
All pairs shortest path problem

- $V = \{1, 2, \ldots, n\}$
- **Subproblems are paths in which all interior nodes are in $\{1..k-1\}$**
 - We restrict paths to u
 - To find the optimal solution, try all ways to use node k as an interior node
- $D_k[i, j] = \text{weight of shortest } ij \text{ path using only intermediate vertices in } \{1 \ldots k\}$
 - Goal: finding $D_n[i, j]$
- Let P be a min-weight i,j-path in which all interior nodes are in $\{1, \ldots, k\}$
- There are two cases
 - Case 1: k is not used in P
 - Interior nodes are all in $\{1, \ldots, k-1\}$
 - Case 2: k is used in P
 - Interior nodes on paths i to k and k to j are all in $\{1, \ldots, k-1\}$
All pairs shortest path problem

- $D_{k}[i, k] =$ weight of shortest ij path using only intermediate vertices in $\{1...k\}$
 - Goal. finding $D_{n}[i, j]$

- **Base cases:**
 - $D_{0}[i, j] :$ shortest path length from i to j without using intermediate vertices
 - $D_{0}[i, j] = 0$ if $u=v$
 - $D_{0}[i, j] = w(u,v)$ if $(u,v) \in E$
 - $D_{0}[i, j] = \infty$ otherwise

- $D_{k}[i, j] =$ min
 - $D_{k-1}[i, k] + D_{k-1}[k, j]$ use vertex k
 - $D_{k-1}[u, v]$ don’t use vertex k

- **Correctness:** this considers all possibilities for k_i. Then induction on i.
All pairs shortest path problem

Initialize $D_0[i, j]$ as above
for k from 0 to $n-1$ do
 for i from 1 to n do
 for j from 1 to n do
 $D_k[i, j] := \min\{D_{k-1}[i, j], D_{k-1}[i, k] + D_{k-1}[k, j]\}$

- Runtime: $O(n^3)$
- Space: $O(n^3)$
 - Need to store two n-by-n arrays, and the original graph.
 - As with Bellman-Ford, we don’t really need to store all n of the D_k
All pairs shortest path problem

Initialize $D_0[i, j]$ as above
for k from 0 to $n-1$ do
 for i from 1 to n do
 for j from 1 to n do
 $D[i, j] := \min\{D[i, j], D[i, k] + D[k, j]\}$

- Runtime: $O(n^3)$
- Space: $O(n^2)$
All pairs shortest path problem

- What if we want the actual path?
 - Along with $D[u, v]$, compute $\text{Next}[u, v] = \text{the first vertex after } u \text{ on a shortest } u \text{ to } v \text{ path}$.
 - Exercise. Check how this works.