Graph Algorithms
Minimum Spanning Tree

Input: a connected, undirected graph \(G = (V, E) \) with weights \(w: E \rightarrow \mathbb{R} \) on the edges

Output: a minimum spanning tree \(T \)

- A **spanning tree** of \(G \) is a graph \((V, T \subseteq E) \) such that \((V, T) \) is a tree
 - A tree: a connected graph with no cycle
- The weight of a tree:
 \[
 w(T) = \sum_{(u,v) \in T} w(u, v)
 \]
- A **minimum spanning tree**: a tree of minimum weight:
 - subset of edges (of size \(n - 1 \)) that connects all the vertices and has minimum weight
Example of MST
Example of MST

The edges on spanning tree

The weight of the above tree is 6+5+8+3+7+9+15
Minimum Spanning Trees

There are many greedy algorithms for finding MSTs:

- Borůvka's algorithm (1926)
- Kruskal's algorithm (1956)
- Prim's algorithm (1930, rediscovered 1957)

We will explore Kruskal's algorithm and Prim's algorithm in this course.
Minimum Spanning Tree

- Can there be more than one minimum spanning tree (MST) for an undirected graph?
 - Yes

- What happens if the graph is unweighted?
 - All spannings trees are minimum spanning trees
Optimal substructure

MST T:

(Other edges of G are not shown.)
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Remove any edge \((u, v) \in T\). Then, \(T\) is partitioned into two subtrees \(T_1\) and \(T_2\).
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.

Then, T is partitioned into two subtrees T_1 and T_2.

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1:

- $V_1 =$ vertices of T_1,
- $E_1 = \{ (x, y) \in E : x, y \in V_1 \}$.

Similarly for T_2.
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \).

Contradiction: since \(T \) was the minimum spanning tree for \(G \).
Kruskal Algorithm

T = Ø
Repeat
- find the least-weight edge (u,v) so that u and v are not connected in T
- add (u,v) to T
Kruskal Algorithm

T = Ø
Repeat
- find the least-weight edge (u, v) so that u and v are not connected in T
- add (u, v) to T

```
T = Ø
Repeat
  - find the least-weight edge (u, v) so that u and v are not connected in T
  - add (u, v) to T
```
Kruskal Algorithm

T = Ø
Repeat
 • find the least-weight edge (u,v) so that u and v are not connected in T
 • add (u,v) to T
Kruskal Algorithm

\[T = \emptyset \]

Repeat
- find the least-weight edge \((u,v)\) so that \(u\) and \(v\) are not connected in \(T\)
- add \((u,v)\) to \(T\)
Kruskal Algorithm

\[T = \emptyset \]

Repeat
 \- find the least-weight edge \((u,v)\) so that \(u\) and \(v\) are not connected in \(T\)
 \- add \((u,v)\) to \(T\)
Kruskal Algorithm

T = Ø
Repeat
 ● find the least-weight edge (u, v) so that u and v are not connected in T
 ● add (u, v) to T
Kruskal Algorithm

T = Ø
Repeat
 ● find the least-weight edge (u,v) so that u and v are not connected in T
 ● add (u,v) to T
Kruskal Algorithm

$T = \emptyset$
Repeat
- find the least-weight edge (u,v) so that u and v are not connected in T
- add (u,v) to T
Kruskal Algorithm

$T = \emptyset$

Repeat
- find the least-weight edge (u, v) so that u and v are not connected in T
- add (u, v) to T
Kruskal Algorithm

Another way to look at Kruskal algorithm:

- At each step, the algorithm merges two connected component
Graph Cuts

In a graph $G = (V, E)$

- A **cut** is a partition of the vertices of the graph into two sets C, $V - C$
 - We show it by $(C, V - C)$
 - $C \subseteq V$.

- An edge (u, v) crosses the cut $(C, V - C)$ if exactly one of u, v is in C

- If G is connected, then at least one edge crosses every cut
Tree Facts

- A tree of n vertices has n-1 edges
- There is a unique path between any two vertices in a tree
- If T is a tree and an edge e ∉ T is added to T, then the resulting graph contains a unique cycle C
- If e’ ∈ C then T U {e} \ {e’} is a tree
 - If you add an edge e to a tree and this creates a cycle C, then removing any other edge e’ ∈ C will break the cycle and produce a tree
 - Proof in the next slide
Theorem. Let T be a tree and $e=(u, v) \notin T$. The graph $T \cup \{e\}$ contains a cycle. For any edge $e'=(x, y)$ on the cycle, the graph $T' = T \cup \{e\} \setminus \{e'\}$ is a tree.

Proof.

- $|T'| = |T| + 1 - 1 = |T| = |V| - 1 \rightarrow$ if T' is connected, then it is a tree. Why?
 - $e \notin T$ and $e' \in T \cup \{e\}$
- Proving T' is connected
 - Consider any $s, t \in V$. Since T is connected, there is some path from s to t in T.
 - If that path does not cross (x, y), or if $(x, y) = (u, v)$, then this path is also a path from s to t in T', so s and t are connected in T'.
 - If the path from s to t crosses (x, y). Assume WLOG that the path starts at s, goes to x, crosses (x, y), then goes from y to t. Since (u, v) and (x, y) are part of the same cycle, we can modify the original path from s to t so that instead of crossing (x, y), it goes around the cycle from x to y. This new path is then a path from s to t in T', so s and t are connected in T'. Thus any arbitrary pair of nodes are connected in T', so T' is connected.
Kruskal Algorithm

Proof of correctness (feasibility)

Proof by induction
Kruskal Algorithm: Proof of optimality

- **T**: MST found by Kruskal Algorithm
- **M**: optimal MST

Proof by contradiction. Suppose $T \neq M$.

$T = e_1 e_2 \ldots e_j \ldots e_n$

$M = e_1 e_2 \ldots m_j \ldots m_n$

- T and M are the same up to j-th edge. Suppose $e_j = (u, v)$ is in T but not in M
- **C**: the connected component containing u when (u, v) was added to T
- When (u, v) was added, it was the least-cost edge crossing the cut $(C, V-C)$
 - (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v)
 - Kruskal algorithm select the least-cost edge crossing the cut
- **M** is a MST \rightarrow There must be a path from u to v in M. This path begins in C and ends in $V-C$. \rightarrow There must be an edge along that path where x in C and y in $V-C$. Since (u, v) is the least-code edge crossing $(C, V-C)$ $\rightarrow w(u, v) < w(x, y)$
- $M' = M - \{(x, y)\} \cup \{(u, v)\}$. M' is a spanning tree because it connects all vertices. Since (x, y) is on the cycle formed by adding (u, v) $w(M') = w(M) - w(x, y) + w(u, y) < w(M) \rightarrow M'$ is a MST \rightarrow contradiction M was the optimal solution
- We used exchange argument
 - exchanging some part of the optimal solution with some part of the greedy solution improved the optimal solution \rightarrow contradiction
- Note: here we are assuming the edge weights are **unique**, otherwise we do not reach a contradiction
Kruskal Algorithm: Proof of optimality
Kruskal Algorithm: Proof of optimality in general

- **T**: MST found by Kruskal Algorithm
- **M**: optimal MST

Proof. We will prove \(w(T) = w(M) \). If \(T = M \), we are done. Otherwise \(T \neq M \), so \(T - M \neq \emptyset \).

- Suppose \(e = (u, v) \) is in \(T \) but not in \(M \)
- **C**: the connected component containing \(u \) when \((u,v) \) was added to \(T \)
- When \((u,v) \) was added, it was the least-cost edge crossing the cut \((C, V-C) \)
 - \((u, v)\) crosses the cut, since \(u \) and \(v \) were not connected when Kruskal's algorithm selected \((u, v)\)
 - Kruskal algorithm selects the least-cost edge crossing the cut
- **M** is a MST → There must be a path from \(u \) to \(v \) in \(M \). This path begins in \(C \) and ends in \(V-C \). → There must be an edge along that path where \(x \in C \) and \(y \in V-C \). Since \((u,v) \) is the least-cost edge crossing \((C, V-C) \) → \(w(u,v) \leq w(x,y) \)
- \(M' = M - \{x,y\} \cup \{(u,v)\} \). \(M' \) is a spanning tree because it connects all vertices. Since \((x,y) \) is on the cycle formed by adding \((u, v) \)
 - \(w(M') = w(M) - w(x,y) + w(u,y) \rightarrow w(M') \leq w(M) \)
- **M'** is a MST → \(w(M) \leq w(M') \rightarrow w(M') = w(M) \)
- Note that \(|T - M'| = |T - M| - 1\). Therefore, if we repeat this process once for each edge in \(T - M \), we will have converted \(M \) into \(T \) while preserving \(w(M) \). Thus \(w(T) = w(M) \).
- We used exchange argument
 - exchanging one edge of \(M \) with one edge of \(T \) without increasing \(w(M) \)
Kruskal Algorithm: pseudocode

Kruskal(G)
 Sort the edges by non-decreasing weight \(e_1 \ldots e_m \), \(w(e_i) \leq w(e_{i+1}) \)
 \(T = \emptyset \)
 for each edge \((u, v) \)
 if \(u \) and \(v \) are not connected by \(T \)
 \(T = T \cup \{(u, v)\} \)
 return \(T \)
Kruskal Algorithm: pseudocode

Kruskal(G)

Sort the edges by non-decreasing weight $e_1 \ldots e_m$, $w(e_i) \leq w(e_{i+1})$

$T = \emptyset$

for each edge (u, v)

if u and v are not connected by T

$T = T \cup \{(u,v)\}$

return T

O(E lg E) or O(E lg V)

O(E)

Use DFS \rightarrow the runtime of DFS is O(V+E). here, the runtime is O(V). why?

Runtime: O(VE)

Can we do better?
Kruskal Algorithm: A better implementation

- Union-find data structure:
 - Represents a **partition** of set $S= \{e_1, e_2, \ldots, e_n \}$ into **disjoint subsets**
 - Initially n disjoint subsets $S_i = \{e_i\}$
 - a collection of disjoint sets $\{S_1, S_2, \ldots, S_k\}$
 - Each element of data belong to exactly one set
 - Each set is identified by a representative (some member of the set)
 - Specifies which set an element belongs to

- Operations of **union-find** data structure
 - **Make-set**(x): Create a set containing one element, x
 - **union**(x, y): unites the sets containing x and y into one set
 - **find**(x): returns a pointer to the representative of the set containing x
Kruskal Algorithm using union-find data structure

Kruskal(G)
 Sort the edges by non-decreasing weight \(e_1 \ldots e_m \), \(w(e_i) \leq w(e_{i+1}) \)
 \(T = \emptyset \)
 \(S = \text{union-find data structure} \)
 for each \(v \) in \(V \)
 \(S.\text{make-set}(v) \)
 for each edge \((u, v)\)
 if \(S.\text{find}(u) \neq S.\text{find}(v) \)
 \(T = T \cup \{(u, v)\} \)
 \(S.\text{union}(u, v) \)
 return \(T \)
Kruskal Algorithm using union-find data structure

- Each graph node is initially in its own subset
- Add an edge → union two subsets
- An edge creates a cycle iff its endpoints are in the same subset
First implementation

- Suppose we are partitioning set \(\{1, \ldots, n\} \) into subsets \(S_1, \ldots, S_n \)
- Represent the partition as a **forest** of **trees**
 - Initially one single-node tree per subset
 - Each node has a **parent** pointer
- \(\text{Find}(i) \) returns the **root** of the tree containing **element** \(i \)
- \(\text{Union}(i,j) \) makes one root the parent of the other
- Problem:
 - Long paths → slow find
First implementation

1 2 3 4

find(1) → 1, find(2) → 2

Union(1,2): parent[1] = 2
find(4) → 4, find(1) → 2

2 3 4

find(3) → 3, find(1) → 4

3 4

Union(3,4): parent[3] = 4

1
Union-find with union by rank

- Keep track of **heights** of trees
- Make **root with greater height** be the **parent**
 - Union of two trees with height h has height $h + 1$
 - Union of tree with height h and tree with height $< h$ has height h
Union-find with union by rank

find(1) -> 1, find(2) -> 2

Union(1, 2): same height, parent[1] = 2
find(4) -> 4, find(1) -> 2

Union(4, 2): 2's height is greater: parent[4] = 2
Runtime of Union-find with union by rank

- Each tree of height h contains at least 2^h nodes
- Proof by induction.
 - Base case: trees with height 0 have $2^0 = 1$ node
 - I.H.: a tree of height h contains at least 2^h nodes
 - Induction step: Having I.H, we want to show a tree of height $h+1$ contains at least 2^{h+1} nodes.
 - Case 1: Union of trees of height h and height < h
 - Left tree has at least 2^h nodes
 - Result has height h and $\geq 2^h$ nodes
 - Case 2: Union of trees of same height
 - Each tree has $\geq 2^h$ nodes.
 - Result has height $h+1$ and $\geq 2^h + 2^h$ nodes
 - $2^h + 2^h = 2^{h+1}$
Runtime of Union-find with union by rank

- Each tree of height h contains at least 2^h nodes
- There are only n nodes in the graph
- Therefore the height is at most $\log n$
- The longest path in the union-find first is $\log n$
- So all union-find operations run in $\Theta (\log n)$ time
Union-find by rank and **path compression**

- A recursive logic is used to achieve path compression with each call to the find operation.
- The Union operation may increase the height of the trees
- The find operation tries to reduce the height at each call and to achieve flatter trees
- The flatter the trees, lower is the complexity of find and union operations.

```python
def find(x):
    if x != parent[x]:
        parent[x] = find(parent[x])  # path compression during find
    return parent[x]
```
Kruskal Algorithm

\[
\text{Kruskal}(G)
\]

Sort the edges by non-decreasing weight \(e_1 \ldots e_m \), \(w(e_i) \leq w(e_{i+1}) \)

\(T = \emptyset \)

for \(i = 1 \) to \(m \)

if \(e_i \) does not make a cycle with \(T \)

\(T = T \cup \{ e_i \} \)

return \(T \)

\[O(E \lg E) \text{ or } O(E \lg V) \]

Can be done in \(O(\alpha(E+V)) \) using union-find data structure

Runtime: \(O(E \log V) \)
Can we do better?
Acknowledgement

The slides of the following course:

https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

And the slides of several previous CS 341@waterloo especially Trevor’s Brown slides