Graph Algorithms
Prim’s Algorithm
Prim’s Algorithm

Idea: Grow one connected component in a greedy fashion (i.e., by adding a vertex \(v \in V - \text{Visited} \) that is one end of a minimum weight edge leaving Visited).
Prim’s algorithm
Prim's Algorithm: Correctness: Unique edge weights

- \(T \): MST found by Prim's Algorithm
- \(M \): optimal MST

Proof by contradiction. Assume \(T \neq M \) → \(T - M \neq \emptyset \) → Let \((u, v)\) be any edge in \(T - M \).

- When \((u,v)\) was added, it was the least-cost edge crossing the cut (Visited, \(V-Visited \))
 - \((u, v)\) crosses the cut, since \(u \) and \(v \) were not connected when Prim's algorithm selected \((u, v)\)
 - Prim's algorithm select the least-cost edge crossing the cut
- \(M \) is a MST → There must be a path from \(u \) to \(v \) in \(M \). This path begins in visited and ends in \(V-Visited \). → There must be an edge along that path where \(x \in \text{Visited} \) and \(y \in V-Visited \). Since \((u,v)\) is the least-code edge crossing (Visited, \(V-Visited \)) → \(w(u,v) < w(x,y) \)
- \(M' = M - \{(x,y)\} \cup \{(u,v)\} \). \(M' \) is a spanning tree because it connects all vertices. Since \((x,y)\) is on the cycle formed by adding \((u, v)\)
- \(w(M') = w(M) - w(x,y) + w(u,v) < w(M) \) → \(M' \) is a MST → contradiction \(M \) was the optimal solution
Prim’s Algorithm: Correctness: Not unique edge weights

- **T**: MST found by Prim’s Algorithm
- **M**: optimal MST

Proof. We will prove $w(T) = w(M)$. If $T = M$, we are done. Otherwise $T \neq M$, so $T-T \neq \emptyset$. Let (u,v) be any edge in $T-M$.

- When (u,v) was added, it was the least-cost edge crossing the cut (Visited, V-Visited)
 - (u, v) crosses the cut, since u and v were not connected when Prim’s algorithm selected (u, v)
 - Prim’s algorithm select the least-cost edge crossing the cut
- M is a MST \rightarrow There must be a path from u to v in M. This path begins in Visited and ends in V-Visited. \rightarrow There must be an edge along that path where x in Visited and y in V-Visited. Since (u,v) is the least-code edge crossing (Visited, V-Visited) $\rightarrow w(u,v) \leq w(x,y)$
- $M' = M-\{(x,y)\} U \{(u,v)\}$. M' is a spanning tree because it connects all vertices. Since (x,y) is on the cycle formed by adding (u, v)
 - $w(M') = w(M) - w(x,y) + w(u,y) \rightarrow w(M') \leq w(M)$
 - M' is a MST $\rightarrow w(M) \leq w(M') \rightarrow w(M') = w(M)$
- Note that $|T - M'| = |T - M| - 1$. Therefore, if we repeat this process once for each edge in $T - M$, we will have converted M into T while preserving $w(M)$. Thus $w(T) = w(M)$.

Prim’s Algorithm

Prim-simple(G, s)

T = ∅
Visited = {s}
while Visited ≠ V
 find vertex v ∉ Visited such that
 there exists a u ∈ visited and
 (u, v) is a minimum weight edge leaving Visited
 T = T U {(u, v)}
 Visited = Visited U {v}
return T

Greedy choice: at each step it adds to the tree an edge that contributes the minimum amount possible to the tree’s weight
Choose vertex v ∈ V − visited connected to a minimum weight edge e = (u, v) between Visited and V − Visited
Prim’s Algorithm Runtime: $O(V^2)$

Prim-simple(G, s)

$T = \emptyset$
Visited = \{s\}
while Visited ≠ V

find vertex v $∉$ Visited such that
there exists a $u \in$ visited and
(u,v) is a minimum weight edge leaving Visited

$T = T \cup \{(u, v)\}$
Visited = Visited $\cup \{v\}$

return T
Prim’s Algorithm: better implementation

- **Idea:** Maintain V – Visited as a priority queue Q.
- For $v \in V$-Visited, we define:

$$ \text{weight}(v) = \begin{cases} \min w(e) & \text{if } e = (u, v) \in E \text{ and } u \in T \\ \infty & \text{otherwise} \end{cases} $$

- The weight of each vertex in V-Visited is the weight of the least-weight edge connecting it to a vertex in Visited.
- **Priority Queue implemented using heap data structure**
 - V - Visited is maintained as an array in heap order, and the key of each vertex is its weight defined above
 - ExtractMin(): remove and return vertex with minimum weight
 - Insert(v, weight(v)): insert vertex v with weight(v)
 - DeleteMin(v): delete the vertex with minimum weight
 - decrease-key(v, oldWeight, newWeight)
 - deletes vertex V with oldWeight and inserts vertex V with newWeight
 - The runtime of all operations are $O(\log k)$ where k is the size of heap
Prim’s Algorithm: better implementation

Idea: Maintain V – Visited as a priority queue Q. The key of each vertex in Q is the weight of the least-weight edge connecting it to a vertex in T.

\[
\text{Prim}(G, s)
\]

\[
\begin{align*}
T &= \emptyset \\
Q &= V \\
\text{Key}[s] &= 0 \\
\text{Key}[u] &= \infty \text{ for all } u \in V \\
\text{while } Q \neq \emptyset & \\
& \quad u = \text{EXTRACT-MIN}(Q) \\
& \quad \text{for each } v \in \text{Adj}[u] \\
& \quad \quad \text{if } v \in Q \text{ and } w(u, v) < \text{key}[v] \\
& \quad \quad \quad \text{Key}[v] = w(u, v) \\
& \quad \quad \quad \text{pred}[v] = u \\
\end{align*}
\]

\[
\text{return } T
\]

At the end, \{ (v, \text{pred}[v]) \} forms the MST.
Prim’s Algorithm: Runtime

Idea: Maintain $V - T$ as a priority queue Q. The key of each vertex in Q is the weight of the least-weight edge connecting it to a vertex in T.

```
Prim(G, s)
T = Ø
Q = V
Key[s] = 0
Key[u] = ∞ for all $u \in V$
while $Q \neq ∅$
    $u = \text{EXTRACT-MIN}(Q)$
    for each $v \in \text{Adj}[u]$
        if $v \in Q$ and $w(u, v) < \text{key}[v]$
            $\text{Key}[v] = w(u, v)$
            $\text{pred}[v] = u$
            # $T = T \cup \{(u, v)\}$
return $T$
```

Runtime = $\Theta(V) \cdot (T_{\text{EXTRACT-MIN}}) + \Theta(E) \cdot (T_{\text{DECREASE-KEY}})$
Prim’s Algorithm: Runtime

Runtime = \(\Theta(V) \cdot (T_{\text{EXTRACT-MIN}}) + \Theta(E) \cdot (T_{\text{DECREASE-KEY}}) \)

<table>
<thead>
<tr>
<th>Q</th>
<th>(T_{\text{EXTRACT-MIN}})</th>
<th>(T_{\text{DECREASE-KEY}})</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(lg \ V))</td>
<td>(O(lg \ V))</td>
<td>(O(E \ lg \ V))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(lg \ V)) amortized</td>
<td>(O(1)) amortized</td>
<td>(O(E + V \ lg \ V)) amortized</td>
</tr>
</tbody>
</table>
Shortest Path
Shortest path

- Consider a digraph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}$. The weight of path $P = (v_1, v_2, \ldots, v_k)$ is defined to be

$$w(P) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

- A shortest path from u to v is a path of minimum weight from u to v.
- Shortest path from u to $v = \delta(u, v) = \min \{ w(P) : P \text{ is a path from } u \text{ to } v \}$
- $\delta(u, v) = \infty$ if no path from u to v exists.
Why BFS is not enough for finding the shortest path?

What is the shortest path from B to G?
Why MST algorithms are not enough?
Finding Shortest paths in graphs

- **Input**: a graph (directed/undirected) $G=(V, E)$ with **non-negative** edge weights $w(e) \geq 0$, and a starting node s
- **Output**: A shortest path from s to each vertex in the graph
- **Single-Source-Shortest-Path** problem
- The length of the shortest path and then find the shortest path
Applications of Shortest Path

Map routing

Robot navigation

Network routing protocols (OSPF, BGP, RIP)
Shortest path: Optimal Substructure property

- **Optimal Substructure property:**
 - Optimal solution to the problem contains optimal solution to the subproblems

- **Example: Shortest path in graphs**
 - **P**: the shortest path between u and v.
 - **Claim**: p_1 is a shortest path from u to w
 - If there were another path, say p'_1 from u to w with less weight, we could cut out p_1 and paste in p'_1 to produce a path $p' = p'_1 + p_2$ with fewer edges → contradiction: p_1 is an optimal solution or the shortest path
 - Similarly we can show p_2 is the shortest path from w to v
Greedy choice: add the vertex with the minimum distance from s
Shortest path: Greedy Algorithm: Dijkstra’s Algorithm: Idea

dist[v] = \infty \text{ for all } v \in V

dist[s] = 0

B = \emptyset \quad \# \text{ B is a set of vertices with known shortest distance to } s

While B \neq V

Choose edge (u, v), u \in B, v \notin B to minimize d(s, u) + w(u, v)

Update d[v]: distance of S to v
Example
Example
Example
Example
Example
Example
Example
Example
Example

Add the relaxation step
Example

Graph with nodes S, A, B, C, D and edges with weights: S to A (3), A to B (4), B to D (2), A to C (2), C to D (9), S to B (10), S to D (infinity), B to S (infinity), D to B (2), C to A (8).
Example
Example
Example

Graph with nodes S, A, B, C, D and edges with weights 0, 3, 4, 7, 2, 2, 8, 9, 11.
Example
Example
Example
Example
Dijkstra's Algorithm: Implementation

d[s] = 0
for each v ∈ V – {s}
 d[v] = ∞
B = ∅
Q = V
while Q ≠ ∅
 u ← EXTRACT-MIN(Q)
 B ← B ∪ {u}
 for each v ∈ Adj[u]
 if (v ∉ B) and (d[v] > d[u] + w(u, v))
 d[v] = d[u] + w(u, v)

Relaxation step
Dijkstra’s Algorithm: Implementation

d[s] = 0
for each v ∈ V - {s}
 d[v] = ∞
B = ∅
Q = V
while Q ≠ ∅
 u ← EXTRACT-MIN(Q)
 B ← B ∪ {u}
 for each v ∈ Adj[u]
 if (v ∉ B) and (d[v] > d[u] + w(u, v))
 d[v] = d[u] + w(u, v)
 parent[v] = u

Relaxation step
Dijkstra’s Algorithm: Runtime Analysis

\[
d[s] = 0
\]

\[
\text{O}(V) \quad \text{for each } v \in V - \{s\}
\]

\[
d[v] = \infty
\]

\[
B = \emptyset
\]

\[
Q = V
\]

\[
\text{O}(V) \quad \text{while } Q \neq \emptyset
\]

\[
u \leftarrow \text{EXTRACT-MIN}(Q)
\]

\[
B \leftarrow B \cup \{u\}
\]

\[
\text{O}(\text{deg}(u)) \quad \text{for each } v \in \text{Adj}[u]
\]

\[
\text{if } (v \notin B) \text{ and } (d[v] > d[u] + w(u, v))
\]

\[
d[v] = d[u] + w(u, v)
\]

\[
\text{parent}[v] = u
\]

Relaxation step

Runtime: If the distances are stored in an array: \(O(V^2 + E) = O(V^2)\)
Dijkstra’s Algorithm: Runtime Analysis

\[d[s] = 0 \]

\[\text{for each } v \in V - \{s\} \]
\[d[v] = \infty \]
\[B = \emptyset \]
\[Q = V \]

\[\text{while } Q \neq \emptyset \]

\[u \leftarrow \text{EXTRACT-MIN}(Q) \]
\[B \leftarrow B \cup \{u\} \]

\[\text{for each } v \in \text{Adj}[u] \]
\[\text{if } (v \notin B) \text{ and } (d[v] > d[u] + w(u, v)) \]
\[d[v] = d[u] + w(u, v) \quad #\text{Decrease key of } v \text{ to } d[v] \]
\[\text{parent}[v] = u \]

\[Q \text{ is a min-heap maintaining } V - B. \text{ The key of each node } v \text{ is } d[v] \]

Runtime: if the distances are stored in a priority queue (heap)

\[O(V \log V + E \log V) = O(E \log V) \]
Correctness Proof

- We prove by induction on size of B.
- \(T(k) \): \(|B| = k \), for all \(u \in B \), \(d[u] \) is the length of the shortest path to all vertices \(u \) in B
 - **Base case**: \(T(1) \) is always true. In this case \(B = \{s\} \), \(|B| = 1 \), and \(d(s) = 0 \)
 - **Induction Hypothesis**: Suppose \(T(k) \) is true
 - **Induction Step**: Prove \(T(k+1) \) is true
 - Suppose \(v \) is the vertex \(k+1 \) that is added by an edge \((u, v)\)
 - \(d[v] = d[u] + w(u, v) \) (**is done by algorithm**)
 - \(P_v \): shortest path from s to v (\((u, v)\) is the final edge on s-v path \(P_v \))
 - For contradiction, suppose \(P_v \) is not the shortest path to v, say another path \(P \) is shorter
 - This path must leave the set \(B \) somewhere. Let \(y \) be the first node on \(P \) that is not in \(B \), and let \(x \) in \(B \) be the node just before \(y \)
 - \(w(P) \geq w \) (path from s to y) \(\geq w \) (path from s to x) + w(x, y)
 - \(\geq w \) (shortest path from s to x) + w(x, y) = d[x] + w(x,y)
 - \(w(P) \geq d[x] + w(x, y) \geq d[u] + w(u, v) = d[v] \)
 - \(w(P) \geq d[v] \) for any other path \(P \) from s to v
\[w(P) \geq w(\text{path from } s \text{ to } y) \geq d[x] + w(x, y) \geq d[u] + w(u, v) = w(P_v) = d[v] \]
Dijkstra

Dijkstra was known for many contributions to computer science, e.g., structured programming, concurrent programming. He designed the above algorithm to demonstrate the capabilities of a new computer (to find railway journeys in the Netherlands). At that time (the 50’s) the result was not considered important. He wrote:

- At the time, algorithms were hardly considered a scientific topic. I wouldn’t have known where to publish it... The mathematical culture of the day was very much identified with the continuum and infinity. Could a finite discrete problem be of any interest? The number of paths from here to there on a finite graph is finite; each path is a finite length; you must search for the minimum of a finite set. Any finite set has a minimum — next problem, please. It was not considered mathematically respectable.
What if a graph has negative-weights edges?

Dijkstra algorithm fails
What if a graph has negative-weights cycles?

- If the graph G contains a negative-weight cycle reachable from s
 - We can go around the negative cycle as many times as we want
 - shortest-path weights are not well defined
- If G contains no negative-weight cycle reachable from the source s
 - for all $v \in V$, the shortest-path weight is well defined (it could have a negative value)
- What is the meaning of the weights?
Negative edge weights in a directed graph

Each vertex contains the shortest-path weight from source s.
Cycles in a shortest path

- Can a shortest path contain a cycle?
 - negative-weight cycle
 - positive-weight cycle
 - 0-weight cycle
 - Shortest paths are simple: can contains at most $|v|$ distinct vertices and at most $|V|-1$ edges
Shortest Path Algorithms

- Given u and v, find shortest uv path
 - Involves solving the more general problem
- Given u, find shortest uv path for every v in V
- Single-source-shortest path problem
 - Unweighted graphs
 - BFS
 - Weighted graphs (non-negative weights)
 - Greedy algorithm: Dijkstra
 - Directed Acyclic graphs
 - General weights (negative and non-negative weights) but no negative cycle
 - Dynamic programming: Bellman-ford algorithm
- All pairs shortest path
Single-source shortest path in DAG

Shortest paths are always well defined in a DAG, Since there are no negative-weight cycle in a graph

- If the DAG contains a path from u to v, u precedes v in the topological sort
- If u comes before v in the topological order, there is no path from v to u
Single-source shortest path in DAG

DAG-Shortest-Paths(G, s)

Topologically sort the vertices of G

\(d[s] \leftarrow 0 \)

for each \(v \in V - \{s\} \)

\(do \ d[v] \leftarrow \infty \)

for each vertex \(u \), taken in topologically sorted order

\(for \ each \ v \in Adj[u] \)

\(if \ d[v] > d[u] + w(u, v) \)

\(d[v] \leftarrow d[u] + w(u, v) \)
Single-source shortest path in DAG: Example
Single-source shortest path in DAG: Runtime: $\Theta(V+E)$

DAG-Shortest-Paths(G, s)

Topologically sort the vertices of G

$\begin{align*}
 d[s] & \leftarrow 0 \\
 \text{for each } v \in V - \{s\} & \quad \left\{ \Theta(V) \right\} \\
 \quad \text{do } d[v] & \leftarrow \infty \\
 \text{for each vertex } u, \text{ taken in topologically sorted order} & \quad \left\{ \Theta(V+E) \right\} \\
 \quad \text{for each } v \in Adj[u] & \\
 \quad \quad \text{if } d[v] > d[u] + w(u, v) & \\
 \quad \quad \quad d[v] & \leftarrow d[u] + w(u, v)
\end{align*}$
Single-source shortest path in DAG: Correctness

Theorem. When the algorithm terminates, \(d[v] = \delta(s, v) \) for all vertices \(v \in V \)

Proof.

- If \(v \) is not reachable from \(s \), then \(d[v] = \delta(s, v) = \infty \)
- If \(v \) is reachable from \(s \), there is a shortest path \(p=<v_0, v_1, \ldots, v_k> \) where \(v_0 = s \) and \(v_k = v \).
- The algorithm processes the vertices in topologically sorted order.
- Therefore, the edges on \(p \) are relaxed in the order \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k) \)
- We can prove by induction on the number of relaxation steps that \(d[v] = \delta(s, v) \)
Single-source shortest path in DAG: Correctness

- **Theorem.** After the k-th edge of path p is relaxed, we have $d[v_k] = \delta(s, v_k)$
- **Proof by induction:** induction on the number of relaxation steps.
- **Induction hypothesis:** After the i-th edge of path p is relaxed, $d[v_i] = \delta(s, v_i)$
- **Base Case:** $i=0$
 - before any edge of p have been relaxed, we have $d[v_0] = d[s] = 0 = \delta(s, s)$
- **Induction step.** Assuming $d[v_{i-1}] = \delta(s, v_{i-1})$ after the (i-1)-th edge was relaxed → we want to show that $d[v_i] = \delta(s, v_i)$ after the i-th edge is relaxed
 - $d[v_i] \leq \delta(s, v_i)$
 - After relaxing edge (v_{i-1}, v_i), we have $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$
 - before relaxing the edge, there are two cases
 - $d[v_i] > d[v_{i-1}] + w(v_{i-1}, v_i)$ if this is the case the algorithm does the following
 - $d[v_i] = d[v_{i-1}] + w(v_{i-1}, v_i)$
 - $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$ if this is the case, no change happen and the property holds
 - $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) = \delta(s, v_i)$ (subpaths of shortest path are also shortest path)
 - $d[v_i] \geq \delta(s, v_i)$
- Therefore $d[v_i] = \delta(s, v_i)$