
Lec 2: Underlying Concepts and Review

Some slides borrowed from CS 240.
Thanks to Anna Lubiw and other previous CS 341 instructors.

Problem Description
Models of Computation
Asymptotic Notation

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 1 / 19

Problems (terminology)

Recall from CS 240 the terminology used so we can precisely characterize
what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational
task. A specification of an infinite set of inputs and corresponding outputs.

Problem Instance: An Input for the specified problem.

Problem Solution: The Output (correct answer) for the specified
problem instance.

Size of a problem instance: Size(I) is a positive integer which is a
measure of the size of the instance I.

Analysis: Measure the Time and Space used by the algorithm as a
function of the input size.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 2 / 19

Algorithms and Programs

Algorithm: An algorithm is a step-by-step process (e.g., described in
pseudo-code) for carrying out a series of computations, given an arbitrary
problem instance I.

Solving a problem: An Algorithm A solves a problem Π if, for every
instance I of Π, A finds (computes) a valid solution for the instance I in
finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming).

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 3 / 19

Models of Computation

We often use Pseudocode: similar to a typical programming language but
intended for a human to read - uses common programming structures
and conventions but omits machine and language specific details.

In contrast, a program is a method of communicating an algorithm to a
computer.

Pseudocode
omits obvious details, e.g. variable declarations,
has limited if any error detection,
sometimes uses English descriptions,
sometimes uses mathematical notation.

Size of an integer? Cost of elementary operations?

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 4 / 19

Random Access Machine
Abstracts Assembly language
“Random access” can access memory location i in one step

ALU

Control Unit

CPU

...
R03

R29

R31

R01

R30

R02

PC

IR

32 bits 32 bits

MAR

MDR

hi

lo

...

0028:

001C:

0034:

0000:

0030:

000C:

0014:
0010:

0024:

0004:

002C:

0018:

0008:

0020:

Memory

32 bits

Size of a memory location? A good compromise:
Word RAM - each memory location holds one word. Assume number
of bits in word is Θ(log n) where n is the input size.
E.g. Given array A[1..n], an index i ∈ [1..n] fits in a word.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 5 / 19

Other Models of Computation

Circuit Family
Abstracts hardware circuitry

Turing Machine
Abstract human computer working with pencil and paper.
Has a read/write head and infinite tape of cells (move left/right 1 cell
at a time) - specific cell access may not be 1 step; time to access
memory location i is proportional to i .

Special purpose or Structured models of computing
Comparison-based model for sorting: Ω(n log n) lower bound

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 6 / 19

Runtime of an Algorithm

Runtime depends on input ⇒ express runtime as a function of input size.
Model of Computation specifies how to count input size.
We expect the runtime to increase as input size increases.

Let TA(I) denote the running time of an algorithm A on instance I.

For a given size n, there are various inputs.
How do we combine runtimes to a single number?

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 7 / 19

Runtime of an Algorithm

Runtime depends on input ⇒ express runtime as a function of input size.
Model of Computation specifies how to count input size.
We expect the runtime to increase as input size increases.

Let TA(I) denote the running time of an algorithm A on instance I.

For a given size n, there are various inputs.
How do we combine runtimes to a single number?

Worst-case complexity of an algorithm: take the worst I
TA(n) = max{TA(I) where I is an input of size n}
Often simply say T (n) (or T (I)) if A is understood.

Average-case complexity of an algorithm: average over I
Often difficult to analyze, depends on input distribution, etc

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 8 / 19

Asymptotic Analysis

Want simple functions: e.g. n log n, n2, etc
Machine independent so ignore coefficients (multiplicative factors)
and lower order terms.

Often use Big-Oh, an upper bound.
Want the tightest bound.

f (n) = 7n2 + 13n + 27 ∈ O(?)
10100n ∈ O(?)
2n+1 ∈ O(?)
(n + 1)! ∈ O(?)

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 9 / 19

Order Notation Summary

O-notation: f (n) ∈ O(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

Ω-notation: f (n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that c |g(n)| ≤ |f (n)| for all n ≥ n0.

Θ-notation: f (n) ∈ Θ(g(n)) if there exist constants c1, c2 > 0 and n0 ≥ 0
such that c1 |g(n)| ≤ |f (n)| ≤ c2 |g(n)| for all n ≥ n0.

o-notation: f (n) ∈ o(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (n)| ≤ c |g(n)| for all n ≥ n0.

ω-notation: f (n) ∈ ω(g(n)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that c |g(n)| ≤ |f (n)| for all n ≥ n0.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 10 / 19

Algebra of Order Notations

Identity rule: f (n) ∈ Θ(f (n))

Transitivity:
If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).
If f (n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) then f (n) ∈ Ω(h(n)).

Maximum rules: Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0.
Then:

f (n) + g(n) ∈ O(max{f (n), g(n)})
f (n) + g(n) ∈ Ω(max{f (n), g(n)})

Proof: max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2 max{f (n), g(n)}

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 11 / 19

Runtime Examples

O(1) - counting a finite number of things
O(log n) - binary search
O(n) - find max
O(n log n) - sorting
O(n2) - insertion sort
O(n3) - multiplying two n × n matrices
O(2n) - try all subsets
O(n!) - try all orderings of a set; e.g. Travelling Salesman
Also,

√
n, log log n, (log n)2, etc

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 12 / 19

Multiple Variables

Output sensitive: Jarvis March O(n ∗ h) where h is the number of edges
in convex hull; i.e. h is a measure of the output.

Multiple variables: Graph G = (V , E) where |V | = n and |E | = m.
m ∈ O(n2) but in some instances (n + m) may have a tighter Θ-bound.

O-notation: f (n, m) ∈ O(g(n, m)) if there exist constants c > 0 and
n0, m0 ≥ 0 such that |f (n, m)| ≤ c |g(n, m)| for all n ≥ n0, m ≥ m0.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 13 / 19

Reductions
Simply put: Using a known algorithm to solve a new problem.

Problem
2-SUM
Instance: Array A[1 . . . n] of numbers and taget number m
Find: i , j s.t. A[i] + A[j] = m (if they exist)

Note: Its sometimes simpler to index arrays from 1 to n.

Algorithm1(A, n, m)
1. for i ← 1 to n do
2. for j ← 1 to n do
3. if A[i] + A[j] = m then
4. return FOUND
5. return FAIL

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 14 / 19

Reductions continued

Algorithm 2: Use algorithms Sort and BinarySearch.

Algorithm2(A, n, m)
1. Sort A
2. for i ← 1 to n do
3. j ← BinarySearch(A, m − A[i])
4. if A[i] + A[j] = m then
5. return FOUND
6. return FAIL

Runtime: O(n log n) + O(n log n) ∈ O(n log n)

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 15 / 19

Reductions continued
Algorithm 3: Improve the 2nd phase.

Algorithm3(A, n, m)
1. Sort A
2. i , j ← 1, n
3. while i ≤ j do
4. sum← A[i] + A[j]
5. if sum > m then
6. j ← j − 1
7. elseif sum < m then
8. i ← i + 1
9. else
10. return FOUND
11. return FAIL

Runtime: O(n log n) + O(n) ∈ O(n log n) but O(n) after sorting.
Correctness Invariant: if a solution exists: i∗ ≤ j∗ then i∗ ≥ i , j∗ ≤ j

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 16 / 19

Reductions continued

Problem
3-SUM
Instance: Array A[1 . . . n] of numbers and taget number m
Find: i , j , k s.t. A[i] + A[j] + A[k] = m (if they exist)

Reduce 3-SUM to 2-SUM.

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 17 / 19

Reductions continued

Problem
3-SUM
Instance: Array A[1 . . . n] of numbers and taget number m
Find: i , j , k s.t. A[i] + A[j] + A[k] = m (if they exist)

Reduce 3-SUM to 2-SUM.
Note: A[i] + A[j] + A[k] = m so A[i] + A[j] = m − A[k]

Algorithm
Run 2-SUM with target m − A[k] for k = 1, . . . , n.

Runtime: O(n · n log n) ∈ O(n2 log n)?

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 18 / 19

Reductions continued
Problem
3-SUM
Instance: Array A[1 . . . n] of numbers and taget number m
Find: i , j , k s.t. A[i] + A[j] + A[k] = m (if they exist)

Reduce 3-SUM to 2-SUM.
Note: A[i] + A[j] + A[k] = m so A[i] + A[j] = m − A[k]

Algorithm
Run 2-SUM with target m − A[k] for k = 1, . . . , n.

Runtime: O(n · n log n) ∈ O(n2 log n)?

Don’t need to sort over and over - use Alg 3 but only sort once.
Runtime: O(n log n) + O(n2) ∈ O(n2)
Faster Algorithms?

Petrick (SCS, UW) CS341 – Module Underlying Concepts Fall 2022 19 / 19

	Lec 2: Underlying Concepts and Review
	Problems (terminology)
	Algorithms and Programs
	Models of Computation
	Random Access Machine
	Other Models of Computation
	Runtime of an Algorithm
	Runtime of an Algorithm
	Asymptotic Analysis
	Order Notation Summary
	Algebra of Order Notations
	Runtime Examples
	Multiple Variables
	Reductions
	Reductions continued
	Reductions continued
	Reductions continued
	Reductions continued
	Reductions continued

