Circuit Satisfiability

- **Circuit**: Consists of one or more **logic gates** connected by **wires**
- **Logic gates**:

<table>
<thead>
<tr>
<th>A</th>
<th>NOT A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A XOR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A NAND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A NOR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Circuit Satisfiability

- **Circuit**: Consists of one or more logic gates connected by wires
Circuit Satisfiability

- **Circuit**: alternative definition: A circuit is a directed acyclic graph with:
 - sources (no edge entering), labelled with variables or 0 or 1 — inputs
 - one sink (no edge leaving) — output
 - internal nodes

- A circuit computes an output (in the obvious way) when values are given for the input variables.
Circuit-SAT (Circuit Satisfiability) Problem

- **Input**: A circuit composed of AND, OR, and NOT gates.
- **Question**: Is it satisfiable?
Circuit-SAT is NP-Complete

Theorem. Circuit SAT is NP-complete.

- **Proof.**
 1. Circuit SAT is in NP.

 2. This is the first NP-completeness proof so we must prove that

 for every X in NP, $X \leq_p \text{Circuit-SAT}$

 i.e. for every X in NP, there is an algorithm that maps any input x for X to a circuit C s.t. x is a YES input iff C is satisfiable.
Circuit SAT is in NP.

- Verifier Algorithm A:
 - Input:
 - a boolean circuit C
 - Certificate: an assignment of a boolean value to each of the source nodes in C
 - Output:
 - Result of verifying certificate: YES/NO
 - Algorithm A:
 - Checks the output of the entire circuit
 - output=1, algorithm A outputs 1
 - output=0, algorithm A outputs 0
Transforming an algorithm to a circuit

- Any algorithm that takes a **fixed** number of bits as input and produces a yes/no answer can be represented by a circuit
 - Circuit output: 1
 - Input to the circuit: the inputs for which the algorithm outputs yes
- If the number of steps of A is polynomial, the circuit has polynomial size
- Write a program for algorithm A. Compile it. Assemble . . . At the hardware level, A is implemented by \(\land \), \(\lor \), \(\neg \) gates. We get a circuit C.
- Inputs to C: bits of x (known), bits of y (variables)
- Internal nodes of circuit: memory locations after each time step of algorithm A
Circuit-SAT is NP-Complete

- Circuit-SAT is NP-complete: for every X in NP, $X \leq_p$ Circuit SAT
 - for every X in NP, there is an algorithm that maps any input x for X to a circuit C s.t. x is a YES input iff C is satisfiable.
- Idea:
 - $X \leq_p$ Circuit SAT
 - Given input x to X, we want to solve the problem using circuit-SAT to decide whether $X(x)$ return YES/NO
 - $X \in$ NP: \exists an efficient verification algorithm A for X. A takes two inputs x, y ($y =$ certificate or “guess”) and outputs YES/NO.
 - To answer whether $x \in X$ for some specific input x of length n, we can equivalently answer

 Is there a y of length $p(n)$ so that $A(x, y)$ output yes

 - Property of A: x is a YES instance for X iff \exists y (of poly size) s.t. $A(x, y)$ outputs YES
 - Convert algorithm A with known input x and unknown input y to a circuit C with input variables = bits of y such that C is satisfiable iff \exists y s.t. $A(x, y)$ outputs YES
 - Because size(y) is polynomial and A runs in polynomial time, the circuit has polynomial size.
Sequence of configurations produced by A when running on input x and certificate y
Example

- **Input**: a graph G
 - A graph with n nodes: specified by $\text{choose}(n,2)$ bits
 - 1 bit for each pair:
 - 1 if there is an edge and 0 otherwise
- **Question**: does it contain a two-node independent set
- **Verifier Algorithm**:
 - **Input**:
 - Graph G with $\text{choose}(n, 2)$ bits
 - The certifier y with n bits: each bit corresponds to a node:
 - 1 if the node belongs to the independent set and 0 otherwise
 - The certifier checks
 - At least two of the bits in y are set to 1
 - No two bits in t are set to 1 if they form the two ends of an edge
Example

Have both ends of some edge been chosen?

Have at least two nodes been chosen?
\[
\begin{align*}
\text{Ind. Set} \leq \text{P} & \quad \text{Vertex Cover} \leq \text{P} \\
\text{Circuit SAT} \leq \text{P} & \quad \\
\text{3-SAT} \leq \text{P} & \quad \text{directed hamiltonian cycle} \leq \text{P} \\
\text{Directed ham. cycle} \leq \text{P} & \quad \text{Subset Sum} \\
\text{Undirected ham. cycle} \leq \text{P} & \quad \\
\text{Ham. cycle} \leq \text{P} & \quad \text{TSP} \\
\text{Subset Sum} & \quad \text{Ham. path} \leq \text{P}
\end{align*}
\]
Circuit-SAT \leq_p 3-SAT

Theorem. 3-SAT is NP-complete.

1. 3-SAT is in NP. (easy, details omitted)

2. Circuit SAT \leq_p 3-SAT

 - Assume we have a polynomial time algorithm for 3-SAT. Make a polynomial time algorithm for Circuit SAT.
 - **Input:** A circuit C
 - **Output:** Is C satisfiable?

 - construct a 3-SAT formula ϕ such that

 C is satisfiable iff ϕ is satisfiable

 - run the 3-SAT algorithm
 - return its answer
Circuit-SAT \leq_p 3-SAT

Convert circuit C to formula φ

The obvious way:

Circuit Size: Superpolynomial
Circuit-SAT \leq_P 3-SAT

Convert circuit C to formula φ

- make a variable x_u for each node u in the circuit
- Output: a boolean formula in CNF, each clause contains at most 3 variables
- See example in the next slide
Circuit-SAT \leq_p 3-SAT

- Convert circuit C to formula ϕ
 - **Input:** a circuit C
 - **Output:** a boolean formula in CNF
- make a variable x_u for each node u in the circuit
 - See example in the next slide
 - each clause contains at most 3 variables
- Turn clauses of at **most 3** literals into clauses of **exactly** 3 literals.
 - Add dummy variables:
 - Case 1: There is 1 variable in the clause, e.g., y
 - Change y with: $(y \lor p \lor q) \land (y \lor p \lor \neg q) \land (y \lor \neg p \lor q) \land (y \lor \neg p \lor \neg q)$
 - Case 2: There are 2 variables in clause, e.g., $(x \lor y)$
 - Change $(x \lor y)$ with: $(x \lor y \lor p) \land (x \lor y \lor \neg p)$
- Final formula: $\phi = \land$ of all clauses $\land x_{output}$
\[x_u \equiv x_v \lor x_w \]

\[(\neg x_u \lor x_v \lor x_w) \land (x_u \lor \neg x_v) \land (x_u \lor \neg x_w) \]

\[x_u \equiv x_v \land x_w \]

\[(\neg x_u \lor x_v) \land (\neg x_u \lor x_w) \land (x_u \lor \neg x_v \lor \neg x_w) \]

\[x_u \equiv \neg x_v \]

\[(x_u \lor x_v) \land (\neg x_u \lor \neg x_v) \]

\[a \equiv b \text{ means } (\neg a \lor b) \land (a \lor \neg b) \]
Circuit-SAT \leq_p 3-SAT: Runtime of reduction

Claim. φ has polynomial size and can be computed in polynomial time.
Circuit-SAT \leq_p 3-SAT: Runtime of reduction

- Convert circuit C to formula φ
 - **Input:** a circuit C
 - **Output:** a boolean formula in CNF
- make a variable x_u for each node u in the circuit
 - See example in the next slide
 - each clause contains at most 3 variables
- Turn clauses of at **most 3** literals into clauses of **exactly** 3 literals.
 - Add dummy variables:
 - Case 1: There is 1 variable in the clause, e.g., y
 - Change y with: $(y \lor p \lor q) \land (y \lor p \lor \neg q) \land (y \lor \neg p \lor q) \land (y \lor \neg p \lor \neg q)$
 - Case 2: There are 2 variables in clause, e.g., $(x \lor y)$
 - Change $(x \lor y)$ with: $(x \lor y \lor p) \land (x \lor y \lor \neg p)$
- **Final formula:** $\varphi = \land$ of all clauses $\land x_{output}$

\text{At most one variable and 3 clause per node $\rightarrow O(n)$}

\text{expanded each clause by ≤ 4 clauses $\rightarrow O(n)$}

\text{The size of the resulting formula is polynomial in the length of the original formula}
Circuit-SAT \leq_p 3-SAT: Correctness of reduction

- **Claim.** C is satisfiable if and only if ϕ is satisfiable
 - \Rightarrow Suppose C is satisfiable. Then assigning True/False to variables of ϕ according to C’s computation will satisfy ϕ
Circuit-SAT \leq_p 3-SAT: Correctness of reduction

- **Claim.** C is satisfiable if and only if ϕ is satisfiable
 - \Leftarrow Suppose ϕ is satisfiable. Then there is an assignment of True/False to the variables (original inputs + new variables for circuit nodes) that makes ϕ True. For circuit C, use the same values for the input variables. By construction, the variables for the circuit nodes capture the evaluation of C. And $x_{\text{output}} = 1$ (True). Therefore C is satisfiable.