\[
\text{Circuit SAT} \leq \text{3-SAT} \leq \text{Subset Sum} \\
\text{Independent Set} \leq \text{Vertex Cover} \leq \text{3-SAT} \\
\text{clique} \leq \text{Directed Hamiltonian Cycle} \leq \text{Undirected Hamiltonian Cycle} \leq \text{TSP} \\
\text{Vertex Cover} \leq \text{Undirected Hamiltonian Cycle} \leq \text{Hamiltonian Path}
\]
Subset Sum

- **Input:** numbers $w_1, w_2, \ldots w_n, W$
- **Question:** is there a subset $S \subseteq \{1, 2, \ldots n\}$ such that $\sum_{i\in S} w_i = W$

- **Theorem.** Subset Sum is NP-complete.
- **Proof.**
 1. Subset Sum is in NP. (done in previous lecture)
 2. 3-SAT \leq_p Subset Sum

 - Assume we have a polynomial time algorithm for Subset Sum. Make a polynomial time algorithm for 3-SAT
 - Input: A 3-SAT formula φ with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
 - Question: Is φ satisfiable?
 1. Construct an instance of subset sum, (S, W), such that

 S, W has a subset S' which sums to W iff φ is satisfiable.

 2. Run the subset sum algorithm
 3. Return its answer
3-SAT \leq_P Subset Sum

- **Input:** A 3-SAT formula φ with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$
- **Construct** an instance of Subset Sum (S, W) such that it has a subset S' that sums to W iff φ is satisfiable
 - **Assumption:**
 - No clause contains a variable and its negation
 - Otherwise, the clause will be automatically satisfied by any value assigned to the literal
 - Each variable appears in at least one clause
 - **Idea:** Create set S so that
 - It has two numbers for each variable x_i and two numbers for each clause
 - In total: $2n + 2m$ numbers
 - Each number has $n+m$ digits
 - Each digit correspond to a variable or a clause
3-SAT \leq_P Subset Sum

- $\phi = C_1 \land C_2 \land C_3 \land C_4$
- $C_1 = (x_1 \lor \neg x_2 \lor \neg x_3)$
- $C_2 = (\neg x_1 \lor \neg x_2 \lor \neg x_3)$
- $C_3 = (\neg x_1 \lor \neg x_2 \lor x_3)$
- $C_4 = (x_1 \lor x_2 \lor x_3)$
- For each variable x_i, set S contains two integers v_i and v'_i
 - All v_i and v'_i values are unique
- For each clause, set S contains two integers s_j and s'_j
 - In the column C_j, $s_j = 1$ $s'_j = 2$, and 0 on the rest of columns

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v'_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v'_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>v'_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s'_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s'_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>s'_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s'_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
3-SAT ≤ₚ Subset Sum

- Each row is a number in set S
- Add two numbers by adding up rows
- ensure we don’t choose row v_i and row $v_i'$$$
- Target sum ≥ 1 to ensure we pick at least one literal in each clause
 - What can the sum be? 1 or 2 or 3.
 - Add slack rows of 1 and 2 so sum can always be 4.
- Each row is a number in S
 - 2n+2m numbers each with n+m digits (base 10)
3-SAT \leq_p Subset Sum

Claim. φ is satisfiable iff there is a subset of the numbers with sum W.

Proof.

- Suppose φ is satisfiable. If x_i is True, pick row v_i. If x_i is False, pick row $\neg v_i$.
- Then column v_i adds up to its target 1, and column C_j adds to 1, 2, or 3.
- Next we choose some slack rows s_j or s'_j to increase the sum to 4.
- This gives a set of rows that sum to 4.

Example: φ: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$
3-SAT ≤ₚ Subset Sum

\(\varphi = C_1 \land C_2 \land C_3 \land C_4 \)

\(C_1 = (x_1 \lor \neg x_2 \lor \neg x_3) \)

\(C_2 = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \)

\(C_3 = (\neg x_1 \lor \neg x_2 \lor x_3) \)

\(C_4 = (x_1 \lor x_2 \lor x_3) \)

\(\varphi: x_1 = 0, x_2 = 0, x_3 = 1 \)

\(S = \{v_1, v'_1, v_2, v'_2, v_3, v'_3, s_1, s'_1, s_2, s'_2, s_3, s'_3, s_4, s'_4\} \)

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(v'_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(v'_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(v'_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s'_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s'_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(s_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(s'_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(s_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(s'_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(W)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
3-SAT \leq_P Subset Sum

φ: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$

$S' = \{v'_1, v'_2, v_3, s_1, s'_1, s'_2, s_3, s_4, s'_4\}$

S' matches the target sum (W), and no carries can occur, the values of S' sum to W
3-SAT \leq_P Subset Sum

Claim. φ is satisfiable iff there is a subset of the numbers with sum W.

Proof.

- Suppose there is a subset S' with sum $W=1114444$
- Because x_i column sum is 1, we must have chosen row x_i or row $\neg x_i$ (not both) — set the variable accordingly.
- Because column C_j sum is 4 and slacks sum to ≤ 3, we must have chosen a literal to satisfy clause C_j. Thus φ is satisfiable.
Approximation Algorithms
Approximation Algorithms

- Many practical problems are NP-complete — no one knows a polynomial time algorithm, nor can we prove that none exists.
- What to do?
 - If the input is small, use an algorithm with exponential time
 - Special cases can be solved in polynomial time
 - Efficient exhaustive search (backtracking, branch-and-bound).
 - Exponential time in the worst case, but can be useful.
 - Heuristics - there might be no guarantee on run-time nor on quality of solution.
 - Local search — start with some solution and try to improve it via small “local” changes.
 - Hill climbing, simulated annealing
 - Particle swarm, evolutionary algorithms
 - Approximation algorithms
 - Near optimal solutions
 - Polynomial time and a guarantee on the quality of the solution
 - E.g. for a minimization problem, might guarantee a solution $\leq 2 \cdot \text{min}$
Approximation Algorithms

- The cost of the approximate solution: C
- The cost of the optimal solution: C^*
- Approximation ratio of an approximation algorithm: $\rho(n)$
 - Maximization problem: $C^* \leq \rho(n) C$
 - Minimization problem: $C \leq \rho(n) C^*$
 - $\rho(n) \geq 1$
- $\rho(n)$-approximation algorithm
 - An algorithm that achieves an approximation ratio of $\rho(n)$
Approximation algorithms for Vertex Cover

- A vertex cover is a set $S \subseteq V$ such that every edge $(u,v) \in E$ has u or v (or both) in S.
- Optimization problem: find a minimum size vertex cover
- Recall that the decision version is NP-complete.
Greedy Algorithm 1

C := ∅

repeat

 C := C ∪ {vertex of maximum degree}

 remove covered edges

Until no edges remain

Examples:

• Runtime: polynomial
Greedy Algorithm 2

\[C := \emptyset \]
\[F = E \quad // \text{F is uncovered edges} \]
While \(F \neq \emptyset \)
 pick \(e = (u,v) \) from \(F \)
 add \(u \) and \(v \) to \(C \)
 remove \((u,v) \) from \(F \)
 remove edges incident to \(u \) from \(F \)
 remove edges incident to \(v \) from \(F \)

- Example:
- Runtime: polynomial
- \(C \) is a vertex cover, since the algorithm loops until every edge in \(F \) has been covered by some vertex in \(C \)
Greedy Algorithm 1 v.s. Greedy Algorithm 2

- Which is better, Algorithm 1 or Algorithm 2?
 - On the example provided, Alg. 1 is better.
- Find an example where algorithm 2 is better
Greedy Algorithm 2: Analysis of approximation factor

- Let $C = \text{vertex cover found by Algorithm}$
- Let $C^* = \text{a minimum vertex cover}$
- **Claim:** $C \leq 2 \cdot C^*$
- **Proof:**
 - A: set of edges picked on the red line of the algorithm
 - $|C^*| \geq |A|$
 - No two edges in A share an endpoint, since one edge is picked all other edges incident on its endpoints are deleted from F
 - No two edges in A are covered by the same vertex from $C^* \rightarrow$ for every vertex in C^*, there is at most one edge in A
 - $|C| = 2|A|$
 - Each execution of line 4 picks an edge for which neither of its endpoints is already in C
 - $|C| \leq 2|C^*|$
Approximation algorithms for Vertex Cover

- We say that Algorithm 2 has approximation factor 2 because it produces a vertex cover of size $\leq 2 \cdot \text{optimum}$
- Algorithm 1 has approximation factor $\Theta(\log n)$. It is worse than Algorithm 2.
- Recall that Vertex Cover and Independent Set are closely related. However, Independent Set has no good approximation algorithm unless $P = NP$.
 - Covered in CS466
Travelling Salesman Problem

Input: a graph G, weights on edges, number k

Question: does G have a TSP tour of length ≤ k

Euclidean TSP. For the complete graph on points in the plane, with weight = Euclidean distance.

Note: Euclidean TSP is NP-complete

key property of Euclidean case: triangle inequality

\[w(c, b) \leq w(c, a) + w(a, b) \]
Approximation algorithm for Euclidean TSP

APPROX-TSP-TOUR (G, c)
1. select a vertex \(r \in G.V \) to be a “root” vertex
2. compute a minimum spanning tree \(T \) for \(G \) from root \(r \) using MST-PRIM (G,c,r)
3. let \(H \) be a list of vertices, ordered according to when they are first visited in a preorder tree walk of \(T \)
4. return the hamiltonian cycle \(H \)
Approximation algorithm for Euclidean TSP
Approximation algorithm for Euclidean TSP

- (a) select a to be the root
- (b) compute MST (min. spanning tree)
- (c) take a tour by walking around it (we visit every vertex but maybe more than once)
- (d) take shortcuts to avoid revisiting vertices note: by the triangle inequality, the short-cuts are shorter

(e) is the optimal solution, not found by the algorithm
Approximation factor for Euclidean TSP

- \(H^* \): optimal tour
- \(T \): minimum spanning tree computed in the algorithm
- **Claim.** \(c(H) \leq 2 \ c(H^*) \)
- **Proof.**
 - \(c(T) \leq c(H^*) \)
 - Deleting any edge from the optimal tour generates a spanning tree
 - \(c(W) = 2c(T) \)
 - \(W \) is the full walk (part e)
 - \(W \) is not a TSP tour since it visits some vertices more than once
 - \(H \) is a tour (part c)
 - \(c(H) \leq c(W) \)
 - \(H \) is obtained by deleting vertices from \(W \)

Combining the above three inequalities

\[
c(H) \leq c(W) = 2c(T) \leq 2 \ c(H^*) \quad \rightarrow \quad c(H) \leq 2 \ c(H^*)
\]
The general TSP

If $\text{P} \neq \text{NP}$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general traveling salesman problem.