• Course mechanics
• Models of computation
• Worked example: Bentley’s problem
 • Multiple solutions, demonstrating different algorithm design techniques
 • Analyzed in different models of computation
COURSE MECHANICS
COURSE MECHANICS

• In person
 • Lectures
 • “Lab” section is for tutorials

• Course website: https://student.cs.uwaterloo.ca/~cs341/
 • Syllabus, calendar, policies, slides, assignments…
 • Read this and mark important dates.

• Keep up with the lectures: Material builds over time…
• Piazza: For questions and announcements.
ASSESSMENTS

• **All sections** have **same** assignments, midterm and final
• Sections are roughly synchronized to ensure necessary content is taught
• Tentative plan is 5 assignments, midterm, final
• See website for grading scheme, etc.
TEXTBOOK

• Available **for free** via library website!
• You are expected to know
 • entire textbook sections, as listed on course website
 • **all the material presented in lectures**
 (unless we explicitly say you aren’t responsible for it)
• Some other textbooks cover some material better… see www
ACADEMIC OFFENSES

- Beware plagiarism
- **High level discussion** about solutions with individual students is **OK**
- Don’t take written notes away from such discussions
- Class-wide discussion of solutions is **not OK** (until deadline+2 days)
WHY IS CS341 IMPORTANT FOR YOU?

• Algorithms is the heart of CS
 • It appears often in later courses
 • It dominates technical interviews
 • Master this material… make your interviews easy!
• Designing algorithms is creative work
 • Useful for some of the more interesting jobs out there
• And, you want to graduate…
MODELS OF COMPUTATION
WHAT IS A COMPUTATIONAL PROBLEM?

• Informally: A description of input, and the desired output

WHAT IS AN ALGORITHM?

• Informally: A well-defined procedure (sequence of steps) to solve a computational problem
ANALYSIS OF ALGORITHMS

• Every program uses **resources**
 • CPU instructions / cycles \rightarrow **time**
 • Memory (RAM) \rightarrow **space**
 • Others: I/O, network bandwidth/messages, locks… (not covered in this course)

• **Analysis** is the study of **how many** resources an algorithm uses
 • Usually using big-O notation (to ignore constant factors)
Running Time of a Program: $T_M(I)$ denotes the running time of a program M on a problem instance I.

Worst-case Running Time as a Function of Input Size: $T_M(n)$ denotes the maximum running time of program M on instances of size n:

$$T_M(n) = \max\{T_M(I) : \text{Size}(I) = n\}.$$

Average-case Running Time as a Function of Input Size: $T_M^{\text{avg}}(n)$ denotes the average running time of program M over all instances of size n:

$$T_M^{\text{avg}}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I : \text{Size}(I) = n\}} T_M(I).$$
MODELS OF COMPUTATION

• Make analysis possible
• Ones covered in this course
 • Unit cost model
 • Word RAM model
 • Bit complexity model
UNIT COST MODEL

- Each variable (or array entry) is a word
- Words can contain unlimited bits
- Basic operations on words take $O(1)$ time
 - Read/write a word in $O(1)$
 - Add two words in $O(1)$
 - Multiply two words in $O(1)$
- Space complexity is the number of words used (excluding the input)
But sometimes we care about word size

- Suppose we want to limit the size of words
- Must consider how many bits are needed to represent a number n

<table>
<thead>
<tr>
<th>n in decimal</th>
<th>n in binary</th>
<th>$\lceil \log_2 n \rceil + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$[0] + 1 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>$[1] + 1 = 2$</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>$[1.58] + 1 = 2$</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>$[2] + 1 = 3$</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>$[2.32] + 1 = 3$</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>$[2.58] + 1 = 3$</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>$[2.81] + 1 = 3$</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>$[3] + 1 = 4$</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>$[3.17] + 1 = 4$</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>$[3.32] + 1 = 4$</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>$[3.46] + 1 = 4$</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>$[3.58] + 1 = 4$</td>
</tr>
</tbody>
</table>

Need $\lceil \log_2 n \rceil + 1$ bits to store n
i.e., $\Theta(\log n)$ bits
WORD RAM MODEL

• Key difference: we care about the size of words
• Words can contain $O(\lg n)$ bits, where n is the number of words in the input
 • Word size depends on input size!
 • Intuition: if the input is an array of n words, a word is large enough to store an array index
• Basic operations on words still take $O(1)$ time
 • (but the values they can contain are limited)
BIT COMPLEXITY MODEL

- Each variable (or array entry) is a **bit string**
- Size of a variable x is the number of bits it needs
 - It takes $O(\log v)$ bits to represent a value v
 - So if v is stored in x, the size of x must be $\Omega(\lg v)$ bits
- **Basic operations** are performed on **individual bits**
 - Read/write a bit in $O(1)$
 - Add/multiply two bits in $O(1)$
- **Space complexity** is the total **number of bits** used (excluding the input)
BENTLEY’S PROBLEM
A worked example to demonstrate algorithm design & analysis
Bentley’s Problem (introductory example)

Given an array of n integers, $A[1]$, ..., $A[n]$, find the maximum sum of consecutive entries of A (return 0 if all entries of A are negative).

Example 1

Array index

<table>
<thead>
<tr>
<th>Array index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution:</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(take all of $A[1..8]$)

Example 2

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(take no elements of A)

Example 3

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution:</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(take $A[3..7]$)
Bentley's Problem: Solution 1

Design: brute force

Try all combinations of i, j
And for each combination,
sum over $k = i \ldots j$

```
max := 0;
for i := 1 to n do
    for j := i to n do
        // compute $A[i] + \ldots + A[j]$
        sum := 0;
        for k := i to j do
            sum := sum + $A[k]$;
        // compare to maximum sum observed so far
        if sum > max then max := sum;
```

Time: in unit cost model?
Bentley’s Problem: Solution 2

max := 0;
for i := 1 to n do
 // for each j, compute \(A[i] + \ldots + A[j] \)
 sum := 0;
 for j := i to n do
 // update sum by adding the next entry \(A[j] \)
 sum := sum + A[j];
 // compare to maximum sum observed so far
 if sum > max then max := sum;

Avoid repeatedly summing over \(k = i \ldots j \)

Design: slightly better brute force

Time: in unit cost model?
Bentley’s Problem: Solution 3

Divide-and-Conquer can also be used here:
Divide an array into two equally-sized parts.
Our solution must either be entirely in the left part, or entirely in
the right part, or it must be crossing the partition line.

Case 1: optimal sol’n is entirely in L

Case 2: optimal sol’n is entirely in R

Case 3: optimal sol’n crosses the partition
Find: maximum subarray going over the middle partition

Find i that maximizes the sum over $i \ldots n/2$

Find j that maximizes the sum over $\left(\frac{n}{2} + 1\right) \ldots j$

We can prove $A[i \ldots j]$ is the maximum subarray going over the middle partition!
WHY $A[i \ldots j]$ IS MAXIMAL

• Suppose not for contradiction

• Then some $A[i' \ldots j']$ that crosses the partition has a larger sum

But both are impossible!

This sum is bigger

So either $\sum L' > \sum L$ or $\sum R' > \sum R$
function solveDnC(A)
 let n = sizeof(A)

 // base case
 if n == 1 then return max(0, A[1])

 // recursive case
 maxL = solveDnC(A[1 .. n/2])
 maxR = solveDnC(A[n/2+1 .. n])

 // compute maxM
 tempSum = 0
 maxI = 0
 for i = n/2 .. 1
 tempSum = tempSum + A[i]
 if tempSum > maxI then maxI = tempSum
 tempSum = 0
 maxJ = 0
 for j = n/2+1 .. n
 tempSum = tempSum + A[j]
 if tempSum > maxJ then maxJ = tempSum
 maxM = maxI + maxJ
 return max(maxL, maxR, maxM)
function solveDnC(A)
 let n = sizeof(A)

 // base case
 if n == 1 then return max(0, A[1])

 // recursive case
 maxL = solveDnC(A[1 .. n/2])
 maxR = solveDnC(A[n/2+1 .. n])

 // compute maxM
 tempSum = 0
 maxI = 0
 for i = n/2 .. 1
 tempSum = tempSum + A[i]
 if tempSum > maxI then maxI = tempSum
 tempSum = 0
 maxJ = 0
 for j = n/2+1 .. n
 tempSum = tempSum + A[j]
 if tempSum > maxJ then maxJ = tempSum
 maxM = maxI + maxJ
 return max(maxL, maxR, maxM)

maxL = 4
maxR = 4
maxM = maxL + maxJ = 8
maxI = 4
maxJ = 4

Return max(4, 4, 8) = 8
function solveDnC(A)
 let n = sizeof(A)

 // base case
 if n == 1 then return max(0, A[1])

 // recursive case
 maxL = solveDnC(A[1 .. n/2])
 maxR = solveDnC(A[n/2+1 .. n])

 // compute maxX
 tempSum = 0
 maxI = 0
 for i = n/2 .. 1
 tempSum = tempSum + A[i]
 if tempSum > maxI then maxI = tempSum
 tempSum = 0
 maxJ = 0
 for j = n/2+1 .. n
 tempSum = tempSum + A[j]
 if tempSum > maxJ then maxJ = tempSum
 maxM = maxI + maxJ
 return max(maxL, maxR, maxM)

Time: $\Theta(n \log n)$
(in unit cost model)
• Revisiting Solution 1

```plaintext
max := 0;
for i := 1 to n do
    for j := i to n do
        // compute A[i] + ... + A[j]
        sum := 0;
        for k := i to j do
            sum := sum + A[k];
        // compare to maximum sum observed so far
        if sum > max then max := sum;
```

Can only add a **pair of bits** in $O(1)$ time. How many bits are added here?

- $\text{size}(A[k]) \in O(\log A[k])$ bits.
- $\text{size}(\text{sum}) \in ???$
- $\text{sum} = A[i] + \cdots + A[k − 1]$

So, $\text{size}(\text{sum}) \in O(\log(A[i] + \cdots + A[k − 1]))$ bits.

How to simplify?
COMPLEXITY OF ADDITION

Adding two numbers \(x+y\) takes \(O(\max\{\text{size}(x), \text{size}(y)\})\) bit operations.

This can be rewritten as \(O(\text{size}(x)+\text{size}(y)) = O(lg x + lg y)\).

Fun fact: the size of \(x+y\) can be 1 bit larger than either \(x\) or \(y\) (multiplication can double \#bits).

Let \(M = \max\{A[1], \ldots, A[n]\}\)

\[
\text{size(sum)} \in O\left(\log \left(A[i] + \cdots + A[k-1] \right) \right) \\
\in O\left(\log (M + \cdots + M) \right) \text{ bits} \\
\in O(\log ((k-i)M)) \text{ bits}
\]

Optional: simplify to \(O(\log kM)\).
Adding Sum and A[k]

- **Recall** size(sum) ∈ \(O(\log kM)\), size(A[k]) ∈ \(O(\log A[k])\) bits

- Adding them takes \(O(\log(kM) + \log A[k])\) bit operations

- And since \(\log A[k] \leq \log M\) we get:
 \(O(\log(kM) + \log M)\)

- And the first term asymptotically dominates:
 \(O(\log kM)\)
ZOOMING OUT TO THE K LOOP

• The addition happens for all values of k
• Total time for the loop is at most $\sum_{k=i}^{j} O(\log kM)$
• Complicated to sum for $k = i \ldots j$
 so get an upper bound with $k = 1 \ldots n$
• $\sum_{k=1}^{n} O(\log kM) = O(\log M + \log 2M + \log 3M + \cdots + \log nM)$
• $\subseteq O(\log nM + \log nM + \log nM + \cdots + \log nM)$
• $= O(n \log nM)$
ACCOUNTING FOR THE OUTER LOOPS

- k loop is repeated at most n^2 times
- Each time taking at most $O(n \log n M)$ time
- So total runtime is $O(n^3 \log n M)$ time

Compare to unit cost model: $O(n^3)$ time

Difference is due to:
1. Growth in variable sizes and
2. Cost of bitwise addition

log-factor difference is common...
HOW ABOUT WORD RAM?

• If each variable fits in a single word, the analysis (and result) is as in the unit cost model.

• Since there are n input words, each $A[k]$ will fit in one word only if $\text{size}(A[k]) \in O(\log n)$
 • i.e., if $O(\log A[k]) = O(\log n)$

• If a variable is too big to fit in a word, it is stored in multiple words, and analysis looks more like bit complexity model.
BENTLEY’S SOLUTIONS: RUNTIME IN PRACTICE

- Consider solutions implemented in C
- Some values measured on a Threadripper 3970x
- Red values extrapolated from measurements
- 0 represents time under 0.01s

<table>
<thead>
<tr>
<th>n</th>
<th>Sol.4 O(n)</th>
<th>Sol.3 O(n lg n)</th>
<th>Sol.2 O(n²)</th>
<th>Sol.1 O(n³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>10,000</td>
<td>0</td>
<td>0</td>
<td>0.036</td>
<td>2 minutes</td>
</tr>
<tr>
<td>100,000</td>
<td>0</td>
<td>0.002</td>
<td>3.582</td>
<td>33 hours</td>
</tr>
<tr>
<td>1M</td>
<td>0.001</td>
<td>0.017</td>
<td>6 minutes</td>
<td>4 years</td>
</tr>
<tr>
<td>10M</td>
<td>0.012</td>
<td>0.195</td>
<td>12 hours</td>
<td>3700 years</td>
</tr>
<tr>
<td>100M</td>
<td>0.112</td>
<td>2.168</td>
<td>50 days</td>
<td>3.7M years</td>
</tr>
<tr>
<td>1 billion</td>
<td>1.124</td>
<td>24.57</td>
<td>1.5 years</td>
<td>> age of life</td>
</tr>
<tr>
<td>10 billion</td>
<td>19.15</td>
<td>5 minutes</td>
<td>150 years</td>
<td>> age of universe</td>
</tr>
</tbody>
</table>
HOMEWORK: BIG-O REVIEW & EXERCISES
\textbf{\textit{O-notation:}}

\(f(n) \in O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Here the complexity of \(f \) is \textbf{not higher} than the complexity of \(g \).
Ω-notation:

$f(n) \in \Omega(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $0 \leq cg(n) \leq f(n)$ for all $n \geq n_0$.

Here the complexity of f is not lower than the complexity of g.

$$f(n) \in \Omega(g(n))$$
Θ-notation:

\[f(n) \in \Theta(g(n)) \text{ if there exist constants } c_1, c_2 > 0 \text{ and } n_0 > 0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0. \]

Here \(f \) and \(g \) have the **same complexity**.

\[f(n) \in \Theta(g(n)) \]

\[g(n) \in \Theta(f(n)) \]

\[f(n) \in O(g(n)) \]

\[f(n) \in \Omega(g(n)) \]

\[O + \Omega = \Theta \]
\textbf{o-notation:}

\(f(n) \in o(g(n)) \) if \textbf{for all} constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Here \(f \) has \textbf{lower complexity} than \(g \).

\textbf{ω-notation:}

\(f(n) \in \omega(g(n)) \) if \textbf{for all} constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(0 \leq cg(n) \leq f(n) \) for all \(n \geq n_0 \).

Here \(f \) has \textbf{higher complexity} than \(g \).
EXERCISE

• Which of the following are true?

• $n^2 \in O(n^3)$

• $n^2 \in o(n^3)$

• $n^3 \in \omega(n^3)$

• $\log n \in o(n)$

• $n \log n \in \Omega(n)$

• $n \log n^2 \in \omega(n \log n)$

• $n \in \Theta(n \log n)$
EXERCISE

• Which of the following are true?

• $n^2 \in O(n^3)$ YES

• $n^2 \in o(n^3)$ YES

• $n^3 \in \omega(n^3)$ NO

• $\log n \in o(n)$ YES

• $n \log n \in \Omega(n)$ YES

• $n \log n^2 \in \omega(n \log n)$ NO

• $n \in \Theta(n \log n)$ NO
Comparing Growth Rates

| $O(n^2)$ | $O(n \log n)$ |

You vs. the guy she tells you not to worry about
Some Common Growth Rates (in increasing order)

polynomial
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$
- $\Theta(n^2)$
- $\Theta(n^c)$

exponential
- $\Theta(1.1^n)$
- $\Theta(2^n)$
- $\Theta(e^n)$
- $\Theta(n!)$
- $\Theta(n^n)$
Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

Then

$$f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty.
\end{cases}$$
 LIMIT RULES 1/3

Constant Function Rule

The limit of a constant function is the constant:

\[\lim_{x \to a} C = C. \]

Sum Rule

This rule states that the limit of the sum of two functions is equal to the sum of their limits:

\[\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x). \]

All of the identities shown hold only if the limits exist.
Product Rule

This rule says that the limit of the product of two functions is the product of their limits (if they exist):

\[
\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).
\]

Quotient Rule

The limit of quotient of two functions is the quotient of their limits, provided that the limit in the denominator function is not zero:

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0.
\]
Power Rule

\[\lim_{x \to a} [f(x)]^p = \left(\lim_{x \to a} f(x) \right)^p, \]

Limit of an Exponential Function

\[\lim_{x \to a} b^f(x) = b^{\lim_{x \to a} f(x)} \]

Limit of a Logarithm of a Function

\[\lim_{x \to a} \log_b f(x) = \log_b \lim_{x \to a} f(x) \]

(Where base \(b > 0 \))
L’HOSPITAL’S RULE

• Often we take the limit of \(\frac{f(n)}{g(n)} \) where both \(f(n) \) and \(g(n) \) tend to \(\infty \), or both \(f(n) \) and \(g(n) \) tend to 0

• Such limits require L’Hospital’s rule

 • This rule says the limit of \(\frac{f(n)}{g(n)} \) in this case is the same as the limit of the derivative

 • In other words, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{d}{dn}f(n)}{\frac{d}{dn}g(n)} \)
USING THE LIMIT METHOD: EXERCISE 1

• Compare growth rate of n^2 and $n^2 - 7n - 30$

 \[
 \lim_{n \to \infty} \frac{n^2 - 7n - 30}{n^2} = \lim_{n \to \infty} \left(1 - \frac{7}{n} - \frac{30}{n^2}\right) = 1
 \]

• So $n^2 - 7n - 30 \in \Theta(n^2)$
USING THE LIMIT METHOD: EXERCISE 2
• Compare growth rate of $(\ln n)^2$ and $n^{1/2}$

$$
\lim_{n \to \infty} \frac{(\ln n)^2}{n^{1/2}} = \lim_{n \to \infty} \frac{d}{dn} \frac{(\ln n)^2}{n^{1/2}}
$$
USING THE LIMIT METHOD: EXERCISE 2

• Compare growth rate of \((\ln n)^2\) and \(n^{1/2}\)

\[
\lim_{n \to \infty} \frac{\frac{d}{dn}(\ln n)^2}{\frac{d}{dn}n^{1/2}} = \lim_{n \to \infty} \frac{2 \ln n \left(\frac{1}{n}\right)}{\frac{1}{2}n^{-1/2}}
\]

\[
= \lim_{n \to \infty} \frac{4 \ln n}{n^{1/2}}
\]

\[
= \lim_{n \to \infty} \frac{4}{n^{1/2}}
\]

\[
= 0
\]

So, \((\ln n)^2 \in o(n^{1/2})\)
Additional Exercises

1. Compare the growth rate of the functions \((3 + (-1)^n)n\) and \(n\).

2. Compare the growth rates of the functions \(f(n) = n|\sin \pi n/2| + 1\) and \(g(n) = \sqrt{n}\).
Algebra of Order Notations

“Maximum” rules: Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Then:

$O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$

$\Theta(f(n) + g(n)) = \Theta(\max\{f(n), g(n)\})$

$\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\})$

“Summation” rules: Suppose I is a finite set. Then

$O\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} O(f(i))$

$\Theta\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} \Theta(f(i))$

$\Omega\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} \Omega(f(i))$
Summation rules are commonly used in loop analysis.

Example:

\[
\sum_{i=1}^{n} O(i) = O \left(\sum_{i=1}^{n} i \right) \\
= O \left(\frac{n(n+1)}{2} \right) \\
= O(n^2).
\]
Arithmetic sequence:

\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2). \]

Geometric sequence:

\[\sum_{i=0}^{n-1} ar^i = \begin{cases}
 a \frac{r^n - 1}{r-1} \in \Theta(r^n) & \text{if } r > 1 \\
 na \in \Theta(n) & \text{if } r = 1 \\
 a \frac{1 - r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1.
\end{cases} \]
Arithmetic-geometric sequence:

\[
\sum_{i=0}^{n-1} (a + di)r^i = \frac{a}{1 - r} - \frac{(a + (n - 1)d)r^n}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2}
\]

provided that \(r \neq 1 \).

Harmonic sequence:

\[
H_n = \sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)
\]
Miscellaneous Formulae

\[n! \in \Theta \left(n^{n+1/2} e^{-n} \right) \]

\[\log n! \in \Theta(n \log n) \]

Another useful formula is

\[\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}, \]

which implies that

\[\sum_{i=1}^{n} \frac{1}{i^2} \in \Theta(1). \]

A sum of powers of integers when \(c \geq 1 \):

\[\sum_{i=1}^{n} i^c \in \Theta(n^{c+1}). \]
LOGARITHM RULES
Logarithm Formulae

1. \(\log_b xy = \log_b x + \log_b y \)
2. \(\log_b \frac{x}{y} = \log_b x - \log_b y \)
3. \(\log_b \frac{1}{x} = -\log_b x \)
4. \(\log_b x^y = y \log_b x \)
5. \(\log_b a = \frac{1}{\log_a b} \)
6. \(\log_b a = \frac{\log_c a}{\log_c b} \)
7. \(a^{\log_b c} = c^{\log_b a} \)
BASE OF LOGARITHM DOES NOT MATTER!

- Big-O notation does not distinguish between log bases
- Proof:
 - Fix two constant logarithm bases b and c
 - From log rules, we can change from \log_c to \log_b by using formula: $
 \log_b x = \frac{\log_c x}{\log_c b}$
 - But $\log_c b$ is a constant!
 - So $\log_c x \in \Theta(\log_b x)$

We typically omit the base, and just write $\Theta(\log x)$ for this reason.
LOOP ANALYSIS
META-ALGORITHM FOR ANALYZING LOOPS

• Identify operations that require only constant time
• The complexity of a loop is the sum of the complexities of all iterations
• Analyze independent loops separately and add the results
• If loops are nested, it often helps to start at the innermost, and proceed outward... but,
 • sometimes you must express several nested loops together in a single equation (using nested summations),
 • and actually evaluate the nested summations... (can be hard)
TWO BIG-O ANALYSIS STRATEGIES

• Strategy 1
 • Prove a O-bound and a matching Ω-bound separately to get a Θ-bound.

• Strategy 2
 • Use Θ-bounds throughout the analysis and thereby obtain a Θ-bound for the complexity of the algorithm.

Often easier (but not always)
Algorithm: \textit{LoopAnalysis1}(n : \text{integer})

1. \texttt{sum} \leftarrow 0 \\
2. \textbf{for} \ i \leftarrow 1 \textbf{ to } n \\
 \quad \textbf{for} \ j \leftarrow 1 \textbf{ to } i \\
 \quad \quad \text{do} \\
 \quad \quad \quad \texttt{do} \\
 \quad \quad \quad \quad \texttt{sum} \leftarrow \texttt{sum} + (i - j)^2 \\
 \quad \quad \quad \quad \texttt{sum} \leftarrow \lfloor \texttt{sum} / i \rfloor \\
3. \textbf{return} \ (\texttt{sum})
Strategy 1: big-O and big-Ω bounds

We focus on the two nested for loops (i.e., (2)).

The total number of iterations is $\sum_{i=1}^{n} i$, with $\Theta(1)$ time per iteration.

Upper bound:

$$\sum_{i=1}^{n} O(i) \leq \sum_{i=1}^{n} O(n) = O(n^2).$$

Lower bound:

$$\sum_{i=1}^{n} \Omega(i) \geq \sum_{i=n/2}^{n} \Omega(i) \geq \sum_{i=n/2}^{n} \Omega(n/2) = \Omega(n^2/4) = \Omega(n^2).$$

Since the upper and lower bounds match, the complexity is $\Theta(n^2)$.

Algorithm: LoopAnalysis1($n : integer$)

(1) $sum \leftarrow 0$

(2) for $i \leftarrow 1$ to n

 for $j \leftarrow 1$ to i

 do$

 do$

 $sum \leftarrow sum + (i - j)^2$

 $sum \leftarrow \lfloor sum/i \rfloor$

 return (sum)
Strategy 2: use Θ-bounds throughout the analysis

Algorithm: \texttt{LoopAnalysis1}($n : \text{integer}$)

1. $\textit{sum} \leftarrow 0$
2. for $i \leftarrow 1$ to n
 - for $j \leftarrow 1$ to i
 - do $\{$
 - $\textit{sum} \leftarrow \textit{sum} + (i - j)^2$
 - $\textit{sum} \leftarrow \lfloor \textit{sum}/i \rfloor$
 - $\}$
3. return (\textit{sum})

Θ-bound analysis

1. $\Theta(1)$
2. Complexity of inner \texttt{for} loop: $\Theta(i)$
 Complexity of outer \texttt{for} loop: $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$
3. $\Theta(1)$

\[
\sum_{i=1}^{n} \Theta(i) = \Theta \left(\sum_{i=1}^{n} i \right) = \Theta \left(\frac{n(n + 1)}{2} \right) = \Theta(n^2).
\]

Total $\Theta(1) + \Theta(n^2) + \Theta(1) = \Theta(n^2)$
EXAMPLE 2

Consider this loop alone... number of loop iterations?

\[j \text{ starts at } i \text{ and is repeatedly divided by } 2 \ldots \text{ this can happen only } \Theta(\log i) \text{ times} \]

So inner loop has runtime \(\Theta(\log i) \)

And the entire inner loop is executed for \(i = 1, 2, \ldots, n \)

So, we have \(T(n) \in \Theta(\sum_{i=1}^{n} \log i) \)

\[
T(n) \in O \left(\sum_{i=1}^{n} \log i \right) \subseteq O(n \log n)
\]

\[
T(n) \in \Omega \left(\sum_{i=1}^{n} \log i \right) \subseteq \Omega \left(\sum_{i=\frac{n}{2}}^{n} \log \frac{n}{2} \right) \subseteq \Omega(n \log n)
\]
... another exercise in loop analysis?
EXAMPLE 3 (BENTLEY’S PROBLEM, SOLUTION 1)

```
max := 0;
for i := 1 to n do
    for j := i to n do
        sum := 0;
        for k := i to j do
            sum := sum + A[k];
        if sum > max then max := sum;
```
Strategy 1: big-Ω and big-Ω bounds

\[
T(n) \in \Theta(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} \left(\Theta(1) + \sum_{k=i}^{j} \Theta(1) + \Theta(1) \right)
\]

\[
T(n) \in \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \in \Theta \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j - i) \right)
\]

\[
T(n) \in O \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j - i) \right) \leq O \left(\sum_{i=1}^{n} \sum_{j=i}^{n} n \right)
\]

\[
\leq O \left(\sum_{i=1}^{n} \sum_{j=1}^{n} n \right)
\]

\[
T(n) \in O(n^3)
\]

This is the **maximum number of iterations** that could be performed in this loop.
Proving a big-Ω bound...

Recall:

\[T(n) \in \Theta \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i) \right) \]

\[T(n) \in \Omega \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i) \right) \]

\[\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=i}^{n} (j-i) \right) \]

\[\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} (j-i) \right) \]

Intuition: \(j - i \) is \(\Omega(n) \) in some iterations. How many iterations? Lots?

To get a good \(\Omega \)-bound, we ask questions like:

When do our loops have many iterations?

When is our dominant term large?

Many iterations: when our \(j \) loop does \(\Omega(n) \) iterations! For example, when \(i \leq n/2 \)...

Large dominant term: when \(j \) is much larger than \(i \) (i.e., by a factor of \(n \))
Proving a big-Ω bound... continued

Recall:

\[T(n) \in \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} (j - i) \right) \]

\[\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} \left(\frac{3n}{4} - \frac{n}{2} \right) \right) \]

\[= \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} \frac{n}{4} \right) \]

\[\geq \Omega \left(\frac{n}{2} \cdot \frac{n}{4} \cdot \frac{n}{4} \right) = \Omega(n^3) \]

Smallest possible value of $j - i$ for these bounds on i,j

We will perform at least this much work in every iteration!

This term does not depend on the loop indexes, so just multiply by the total number of loop iterations...

Since we have $O(n^3)$ and $\Omega(n^3)$, we have proved $\Theta(n^3)$
BONUS

• Study-song of the day
• Tool - Descending
• youtu.be/PcSoLwFisaw