TABLE OF CONTENTS

- Course mechanics
- Models of computation
- Worked example: Bentley’s problem
 - Multiple solutions, demonstrating **different algorithm design techniques**
 - **Analyzed** in different models of computation
COURSE MECHANICS

• In person
 • Lectures
 • “Lab” section is for tutorials
• Course website: https://student.cs.uwaterloo.ca/~cs341/
 • Syllabus, calendar, policies, slides, assignments…
 • Read this and mark important dates.
• Keep up with the lectures: Material builds over time…
• Piazza: For questions and announcements.
ASSESSMENTS

- All sections have same assignments, midterm and final
- Sections are roughly synchronized to ensure necessary content is taught
- Tentative plan is 5 assignments, midterm, final
- See website for grading scheme, etc.
Available for free via library website!

You are expected to know

- entire textbook sections, as listed on course website
- all the material presented in lectures (unless we explicitly say you aren’t responsible for it)

Some other textbooks cover some material better… see www
ACADEMIC OFFENSES

• Beware plagiarism
• **High level discussion** about solutions with individual students is **OK**
• Don’t take written notes away from such discussions
• Class-wide discussion of solutions is **not** OK (until deadline+2 days)
WHY IS CS341 IMPORTANT FOR YOU?

• Algorithms is the heart of CS
 • It appears often in later courses
 • It dominates technical interviews
 • Master this material... make your interviews easy!
• Designing algorithms is creative work
 • Useful for some of the more interesting jobs out there
• And, you want to graduate...
MODELS OF COMPUTATION
WHAT IS A COMPUTATIONAL PROBLEM?

- Informally: A description of input, and the desired output

WHAT IS AN ALGORITHM?

- Informally: A well-defined procedure (sequence of steps) to solve a computational problem
ANALYSIS OF ALGORITHMS

- Every program uses resources
 - CPU instructions / cycles → time
 - Memory (RAM) → space
 - Others: I/O, network bandwidth/messages, locks… (not covered in this course)

- Analysis is the study of how many resources an algorithm uses
 - Usually using big-O notation (to ignore constant factors)
Running Time of a Program: $T_M(I)$ denotes the running time of a program M on a problem instance I.

Worst-case Running Time as a Function of Input Size: $T_M(n)$ denotes the maximum running time of program M on instances of size n:

$$T_M(n) = \max\{T_M(I) : \text{Size}(I) = n\}.$$

Average-case Running Time as a Function of Input Size: $T_M^{\text{avg}}(n)$ denotes the average running time of program M over all instances of size n:

$$T_M^{\text{avg}}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I : \text{Size}(I) = n\}} T_M(I).$$

But how do we know how much time M will take on input I?

Depends on the model of computation.
MODELS OF COMPUTATION

• Make analysis possible
• Ones covered in this course
 • **Unit cost** model
 • **Word RAM** model
 • **Bit complexity** model
UNIT COST MODEL

- Each variable (or array entry) is a word
- Words can contain unlimited bits
- Basic operations on words take O(1) time
 - Read/write a word in O(1)
 - Add two words in O(1)
 - Multiply two words in O(1)
- Space complexity is the number of words used (excluding the input)
BUT SOMETIMES WE CARE ABOUT WORD SIZE

• Suppose we want to limit the size of words
• Must consider how many bits are needed to represent a number n

Need $\lceil \log_2 n \rceil + 1$ bits to store n

i.e., $\Theta(\log n)$ bits

<table>
<thead>
<tr>
<th>n in decimal</th>
<th>n in binary</th>
<th>$\lceil \log_2 n \rceil + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$\lceil 0 \rceil + 1 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>$\lceil 1 \rceil + 1 = 2$</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>$\lceil 1.58 \rceil + 1 = 2$</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>$\lceil 2 \rceil + 1 = 3$</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>$\lceil 2.32 \rceil + 1 = 3$</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>$\lceil 2.58 \rceil + 1 = 3$</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>$\lceil 2.81 \rceil + 1 = 3$</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>$\lceil 3 \rceil + 1 = 4$</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>$\lceil 3.17 \rceil + 1 = 4$</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>$\lceil 3.32 \rceil + 1 = 4$</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>$\lceil 3.46 \rceil + 1 = 4$</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>$\lceil 3.58 \rceil + 1 = 4$</td>
</tr>
</tbody>
</table>
WORD RAM MODEL

- Key difference: we care about the size of words
- Words can contain $O(\lg n)$ bits, where n is the number of words in the input
 - Word size depends on input size!
 - Intuition: if the input is an array of n words, a word is large enough to store an array index
- Basic operations on words still take $O(1)$ time
 - (but the values they can contain are limited)
BIT COMPLEXITY MODEL

• Each variable (or array entry) is a bit string
• Size of a variable x is the number of bits it needs
 • It takes $O(\log v)$ bits to represent a value v
 • So if v is stored in x, the size of x must be $\Omega(\lg v)$ bits
• Basic operations are performed on individual bits
 • Read/write a bit in $O(1)$
 • Add/multiply two bits in $O(1)$
• Space complexity is the total number of bits used
 (excluding the input)
BENTLEY’S PROBLEM

A worked example to demonstrate algorithm design & analysis
Bentley’s Problem (introductory example)

Given an array of n integers, $A[1], \ldots, A[n]$, find the maximum sum of consecutive entries of A (return 0 if all entries of A are negative).

Example 1

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Solution: 19
(take all of $A[1..8]$)

Example 2

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>-1</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Solution: 0
(take no elements of A)

Example 3

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>1</td>
<td>-7</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Solution: 8
(take $A[3..7]$)
Bentley’s Problem: Solution 1

Design: brute force

Try all combinations of i, j
And for each combination, sum over $k = i \ldots j$

$$\begin{array}{c}
i \\
1 & -7 & 4 & 0 & 2 & -1 & 3 & -1 \\
j \\
\end{array}$$

max := 0;
for $i := 1$ to n do
 for $j := i$ to n do
 // compute $A[i] + \ldots + A[j]$
 sum := 0;
 for $k := i$ to j do
 sum := sum + $A[k]$;
 // compare to maximum sum observed so far
 if sum > max then max := sum;

Time: in unit cost model?
Bentley’s Problem: Solution 2

max := 0;
for i := 1 to n do
 // for each j, compute $A[i] + \ldots + A[j]$
 sum := 0;
 for j := i to n do
 // update sum by adding the next entry $A[j]$
 sum := sum + A[j];
 // compare to maximum sum observed so far
 if sum > max then max := sum;
 $i = j \quad j \quad j \quad j$

Avoid repeatedly summing over $k = i \ldots j$

Design: slightly better brute force

Time: in unit cost model?
Bentley’s Problem: Solution 3

Divide-and-Conquer can also be used here:
Divide an array into two equally-sized parts.
Our solution must either be entirely in the left part, or entirely in the right part, or it must be crossing the partition line.

Case 1: optimal sol’n is entirely in L

Case 2: optimal sol’n is entirely in R

Case 3: optimal sol’n crosses the partition
Find: maximum subarray going over the middle partition

\[A = \begin{array}{ccccccc}
1 & -7 & 4 & 0 & 2 & -1 & 3 & 0 \\
\end{array} \]

- Find \(i \) that maximizes the sum over \(i \ldots n/2 \)
- Find \(j \) that maximizes the sum over \((n/2 + 1) \ldots j \)

We can prove \(A[i \ldots j] \) is the maximum subarray going over the middle partition!
WHY $A[i \ldots j]$ IS MAXIMAL

• Suppose not for contradiction
• Then some $A[i' \ldots j']$ that crosses the partition has a larger sum

But both are impossible!

This sum is bigger

So either $\sum L' > \sum L$ or $\sum R' > \sum R$
```plaintext
function solveDNc(A)
    let n = sizeof(A)

    // base case
    if n == 1 then return max(0, A[1])

    // recursive case
    maxL = solveDNc(A[1 .. n/2])
    maxR = solveDNc(A[n/2+1 .. n])

    // compute maxM
    tempSum = 0
    maxI = 0
    for i = n/2 .. 1
        tempSum = tempSum + A[i]
        if tempSum > maxI then maxI = tempSum
    tempSum = 0
    maxJ = 0
    for j = n/2+1 .. n
        tempSum = tempSum + A[j]
        if tempSum > maxJ then maxJ = tempSum
    maxM = maxI + maxJ
    return max( maxL, maxR, maxM )
```

A = | 9 -3 4 -5 |
 | -2 -5 3 -1 |

L = 9 -3 4 -5
R = -2 -5 3 -1

maxL = 10
maxR = 3
maxM = maxL + maxJ = 5
maxI = 5
maxJ = 0

Return max(10, 3, 5) = 10
function solveDnC(A)
 let n = sizeof(A)

 // base case
 if n == 1 then return max(0, A[1])

 // recursive case
 maxL = solveDnC(A[1 .. n/2])
 maxR = solveDnC(A[n/2+1 .. n])

 // compute maxM
 tempSum = 0
 maxI = 0
 for i = n/2 .. 1
 tempSum = tempSum + A[i]
 if tempSum > maxI then maxI = tempSum

 tempSum = 0
 maxJ = 0
 for j = n/2+1 .. n
 tempSum = tempSum + A[j]
 if tempSum > maxJ then maxJ = tempSum

 maxM = maxI + maxJ
 return max(maxL, maxR, maxM)

maxL = 4
maxR = 4
maxM = maxL + maxJ = 8
maxI = 4
maxJ = 4

Return max(4, 4, 8) = 8
How do we analyze this running time?

Need new mathematical techniques!

Recurrence relations, recursion tree methods, master theorem...

This result is really quite good... but can we do asymptotically better?

```
function solveDnC(A)
    let n = sizeof(A)

    // base case
    if n == 1 then return max(0, A[1])

    // recursive case
    maxL = solveDnC(A[1 .. n/2])
    maxR = solveDnC(A[n/2+1 .. n])

    // compute maxM
    tempSum = 0
    maxI = 0
    for i = n/2 .. 1
        tempSum = tempSum + A[i]
        if tempSum > maxI then maxI = tempSum
    tempSum = 0
    maxJ = 0
    for j = n/2+1 .. n
        tempSum = tempSum + A[j]
        if tempSum > maxJ then maxJ = tempSum
    maxM = maxI + maxJ
    return max( maxL, maxR, maxM )
```
ANALYSIS IN THE **BIT COMPLEXITY** MODEL

- Revisiting Solution 1

```plaintext
max := 0;
for i := 1 to n do
  for j := i to n do
    // compute A[i] + ... + A[j]
    sum := 0;
    for k := i to j do
      sum := sum + A[k];
    // compare to maximum sum observed so far
    if sum > max then max := sum;
```

Can only add a **pair of bits** in \(O(1) \) time. How many bits are added here?

- \(\text{size}(A[k]) \in O(\log A[k]) \) bits.
- \(\text{size}(\text{sum}) \in ??? \)
- \(\text{sum} = A[1] + ... + A[k-1] \)

How to simplify?

- \(\text{so size(sum)} \in O(\log(A[1] + ... + A[k-1])) \) bits
Adding two numbers \(x+y\) takes \(O(\max\{\text{size}(x), \text{size}(y)\})\) bit operations.

This can be rewritten \(O(\text{size}(x)+\text{size}(y)) = O(\lg x + \lg y)\).

Fun fact: the size of \(x+y\) can be 1 bit larger than either \(x\) or \(y\) (multiplication can double #bits).

Let \(M = \max\{A[1], \ldots, A[n-1]\}\)

- \(\text{size(sum)} \in O\left(\log (A[1] + \cdots + A[k-1])\right)\)
- \(\in O\left(\log (M + \cdots + M)\right) \text{ bits}\)
- \(\in O\left(\log (M(k-1))\right) \text{ bits}\)

Optional: simplify to \(O(\log kM)\).
ADDING SUM AND A[K]

- **Recall** \(\text{size}(\text{sum}) \in O(\log kM), \quad \text{size}(A[k]) \in O(\log A[k]) \) bits
- Adding them takes \(O(\log(kM) + \log A[k]) \) bit operations
- And since \(\log A[k] \leq \log M \) we get: \(O(\log(kM) + \log M) \)
- And the first term asymptotically dominates: \(O(\log kM) \)
ZOOMING OUT TO THE K LOOP

- The addition happens for all values of k
- Total time for the loop is at most $\sum_{k=i}^{j} O(\log kM)$
- Complicated to sum for $k = i \ldots j$
 so get an upper bound with $k = 1 \ldots n$
- $\sum_{k=1}^{n} O(\log kM) = O(\log M + \log 2M + \log 3M + \ldots + \log nM)$
- $\leq O(\log nM + \log nM + \log nM + \ldots + \log nM)$
- $= O(n \log nM)$

```c
for k := i to j do
    sum := sum + A[k];
```
ACCOUNTING FOR THE OUTER LOOPS

• k loop is repeated at most n^2 times
• Each time taking at most $O(n \log nM)$ time
• So total runtime is $O(n^3 \log nM)$ time

Compare to unit cost model: $O(n^3)$ time

Difference is due to
(1) growth in variable sizes and
(2) cost of bitwise addition

log-factor difference is common...

```python
max := 0;
for i := 1 to n do
    for j := i to n do
        // compute $A[i] + \ldots + A[j]$
        sum := 0;
        for k := i to j do
            sum := sum + A[k];
        // compare to maximum sum observed so far
        if sum > max then max := sum;
```
HOW ABOUT WORD RAM?

• If each variable fits in a single word, the analysis (and result) is as in the unit cost model

• Since there are n input words, each $A[k]$ will fit in one word only if $\text{size}(A[k]) \in O(\log n)$
 • i.e., if $O(\log A[k]) = O(\log n)$

• If a variable is too big to fit in a word, it is stored in multiple words, and analysis looks more like bit complexity model
Bentley’s Solutions: Runtime in Practice

- Consider solutions implemented in C
- Some values **measured** on a Threadripper 3970x
- Red values **extrapolated** from measurements
- 0 represents time under 0.01s

<table>
<thead>
<tr>
<th>n</th>
<th>Sol.4 O(n)</th>
<th>Sol.3 O(n lg n)</th>
<th>Sol.2 O(n²)</th>
<th>Sol.1 O(n³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.012</td>
</tr>
<tr>
<td>10,000</td>
<td>0</td>
<td>0</td>
<td>0.036</td>
<td>2 minutes</td>
</tr>
<tr>
<td>100,000</td>
<td>0</td>
<td>0.002</td>
<td>3.582</td>
<td>33 hours</td>
</tr>
<tr>
<td>1M</td>
<td>0.001</td>
<td>0.017</td>
<td>6 minutes</td>
<td>4 years</td>
</tr>
<tr>
<td>10M</td>
<td>0.012</td>
<td>0.195</td>
<td>12 hours</td>
<td>3700 years</td>
</tr>
<tr>
<td>100M</td>
<td>0.112</td>
<td>2.168</td>
<td>50 days</td>
<td>3.7M years</td>
</tr>
<tr>
<td>1 billion</td>
<td>1.124</td>
<td>24.57</td>
<td>1.5 years</td>
<td>> age of life</td>
</tr>
<tr>
<td>10 billion</td>
<td>19.15</td>
<td>5 minutes</td>
<td>150 years</td>
<td>> age of universe</td>
</tr>
</tbody>
</table>
HOMEWORK: BIG-O REVIEW & EXERCISES
O-notation:

$f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Here the complexity of f is **not higher** than the complexity of g.

\[f(n) \in O(g(n)) \]
Ω-notation:

\[f(n) \in \Omega(g(n)) \] if **there exist** constants \(c > 0 \) and \(n_0 > 0 \) such that
\[0 \leq cg(n) \leq f(n) \] for all \(n \geq n_0 \).

Here the complexity of \(f \) is **not lower** than the complexity of \(g \).
Θ-notation:

\[f(n) \in \Theta(g(n)) \text{ if there exist constants } c_1, c_2 > 0 \text{ and } n_0 > 0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0. \]

Here \(f \) and \(g \) have the same complexity.

\[f(n) \in \Theta(g(n)) \]
\[g(n) \in \Theta(f(n)) \]
\[f(n) \in O(g(n)) \]
\[f(n) \in \Omega(g(n)) \]
\[O + \Omega = \Theta \]
\textbf{o-notation:}

\(f(n) \in o(g(n)) \) if \textbf{for all} constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Here \(f \) has \textbf{lower complexity} than \(g \).

\textbf{ω-notation:}

\(f(n) \in \omega(g(n)) \) if \textbf{for all} constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(0 \leq cg(n) \leq f(n) \) for all \(n \geq n_0 \).

Here \(f \) has \textbf{higher complexity} than \(g \).
EXERCISE

• Which of the following are true?

• $n^2 \in O(n^3)$
• $n^2 \in o(n^3)$
• $n^3 \in \omega(n^3)$
• $\log n \in o(n)$
• $n \log n \in \Omega(n)$
• $n \log n^2 \in \omega(n \log n)$
• $n \in \Theta(n \log n)$
EXERCISE

• Which of the following are true?

 • $n^2 \in O(n^3)$ YES
 • $n^2 \in o(n^3)$ YES
 • $n^3 \in \omega(n^3)$ NO
 • $\log n \in o(n)$ YES
 • $n \log n \in \Omega(n)$ YES
 • $n \log n^2 \in \omega(n \log n)$ NO
 • $n \in \Theta(n \log n)$ NO
COMPARING GROWTH RATES

you vs. the guy she tells you not to worry about

\[O(n^2) \] \[O(n \log n) \]
Some Common Growth Rates (in increasing order)

Polynomial
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$
- $\Theta(n^2)$
- $\Theta(n^c)$

Exponential
- $\Theta(1.1^n)$
- $\Theta(2^n)$
- $\Theta(e^n)$
- $\Theta(n!)$
- $\Theta(n^n)$
Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

Then

$$f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty.
\end{cases}$$
LIMIT RULES 1/3

Constant Function Rule

The limit of a constant function is the constant:

\[
\lim_{x \to a} C = C.
\]

Sum Rule

This rule states that the limit of the sum of two functions is equal to the sum of their limits:

\[
\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).
\]

All of the identities shown hold *only if the limits exist*.
Product Rule

This rule says that the limit of the product of two functions is the product of their limits (if they exist):

$$\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$$

Quotient Rule

The limit of quotient of two functions is the quotient of their limits, provided that the limit in the denominator function is not zero:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0.$$
Power Rule

\[\lim_{x \to a} [f(x)]^p = \left(\lim_{x \to a} f(x) \right)^p, \]

Limit of an Exponential Function

\[\lim_{x \to a} b^{f(x)} = b^{\lim_{x \to a} f(x)} \]

Limit of a Logarithm of a Function

\[\lim_{x \to a} \log_b f(x) = \log_b \lim_{x \to a} f(x) \]

(Where base \(b > 0 \))
L’HOSPITAL’S RULE

• Often we take the limit of \(\frac{f(n)}{g(n)} \) where both \(f(n) \) and \(g(n) \) tend to \(\infty \), or both \(f(n) \) and \(g(n) \) tend to 0.

• Such limits require L’Hospital’s rule.
 • This rule says the limit of \(\frac{f(n)}{g(n)} \) in this case is the same as the limit of the derivative.

• In other words, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{d}{dn}f(n)}{\frac{d}{dn}g(n)} \)
USING THE LIMIT METHOD: EXERCISE 1

• Compare growth rate of n^2 and $n^2 - 7n - 30$

\[
\lim_{n \to \infty} \frac{n^2 - 7n - 30}{n^2} = \lim_{n \to \infty} \left(1 - \frac{7}{n} - \frac{30}{n^2}\right) = 1
\]

• So $n^2 - 7n - 30 \in \Theta(n^2)$
USING THE LIMIT METHOD: EXERCISE 2

• Compare growth rate of \((\ln n)^2\) and \(n^{1/2}\)

\[
\lim_{n \to \infty} \frac{(\ln n)^2}{n^{1/2}} = \lim_{n \to \infty} \frac{d}{dn} \frac{(\ln n)^2}{n^{1/2}}
\]
USING THE LIMIT METHOD: EXERCISE 2

• Compare growth rate of \((\ln n)^2\) and \(n^{1/2}\)

\[
\lim_{n \to \infty} \frac{\frac{d}{dn}(\ln n)^2}{\frac{d}{dn} n^{1/2}}
\]

\[
= \lim_{n \to \infty} \frac{2 \ln n (1/n)}{\frac{1}{2} n^{-1/2}}
\]

\[
= \lim_{n \to \infty} \frac{4 \ln n}{n^{1/2}}
\]

\[
= \lim_{n \to \infty} \frac{4}{n^{1/2}}
\]

\[
= 0
\]

\[
\therefore (\ln n)^2 \in o(n^{1/2})
\]
Additional Exercises

1. Compare the growth rate of the functions \((3 + (-1)^n)n\) and \(n\).

2. Compare the growth rates of the functions \(f(n) = n \left| \sin \frac{\pi n}{2} \right| + 1\) and \(g(n) = \sqrt{n}\).
SUMMATIONS AND SEQUENCES
Algebra of Order Notations

“Maximum” rules: Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Then:

\[
O(f(n) + g(n)) = O(\max\{f(n), g(n)\})
\]

\[
\Theta(f(n) + g(n)) = \Theta(\max\{f(n), g(n)\})
\]

\[
\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\})
\]

“Summation” rules: Suppose I is a finite set. Then

\[
O\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} O(f(i))
\]

\[
\Theta\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} \Theta(f(i))
\]

\[
\Omega\left(\sum_{i \in I} f(i)\right) = \sum_{i \in I} \Omega(f(i))
\]
Summation rules are commonly used in loop analysis.

Example:

\[
\sum_{i=1}^{n} O(i) = O\left(\sum_{i=1}^{n} i\right) = O\left(\frac{n(n+1)}{2}\right) = O(n^2).
\]
SEQUENCES

Arithmetic sequence:

\[
\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2).
\]

Geometric sequence:

\[
\sum_{i=0}^{n-1} ar^i = \begin{cases}
 a \frac{r^n - 1}{r - 1} \in \Theta(r^n) & \text{if } r > 1 \\
 na \in \Theta(n) & \text{if } r = 1 \\
 a \frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1.
\end{cases}
\]
Arithmetic-geometric sequence:

$$\sum_{i=0}^{n-1} \left(a + di \right) r^i = \frac{a}{1 - r} - \frac{(a + (n - 1)d)r^n}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2}$$

provided that $r \neq 1$.

Harmonic sequence:

$$H_n = \sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)$$
Miscellaneous Formulae

\[n! \in \Theta \left(n^{n+1/2} e^{-n} \right) \]
\[\log n! \in \Theta(n \log n) \]

Another useful formula is

\[
\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6},
\]

which implies that

\[
\sum_{i=1}^{n} \frac{1}{i^2} \in \Theta(1).
\]

A sum of powers of integers when \(c \geq 1 \):

\[
\sum_{i=1}^{n} i^c \in \Theta(n^{c+1}).
\]
LOGARITHM RULES
Logarithm Formulae

1. \(\log_b xy = \log_b x + \log_b y \)
2. \(\log_b \frac{x}{y} = \log_b x - \log_b y \)
3. \(\log_b \frac{1}{x} = -\log_b x \)
4. \(\log_b x^y = y \log_b x \)
5. \(\log_b a = \frac{1}{\log_a b} \)
6. \(\log_b a = \frac{\log_c a}{\log_c b} \)
7. \(a^{\log_b c} = c^{\log_b a} \)
Big-O notation does not distinguish between log bases.

Proof:

- Fix two constant logarithm bases b and c.
- From log rules, we can change from $\log_c x$ to $\log_b x$ by using formula: $\log_b x = \frac{\log_c x}{\log_c b}$.
- But $\log_c b$ is a constant!
- So $\log_c x \in \Theta(\log_b x)$.

We typically omit the base, and just write $\Theta(\log x)$ for this reason.
LOOP ANALYSIS
META-ALGORITHM FOR ANALYZING LOOPS

• Identify operations that require only constant time
• The complexity of a loop is the sum of the complexities of all iterations
• Analyze independent loops separately and add the results
• If loops are nested, it often helps to start at the innermost, and proceed outward… but,
 • sometimes you must express several nested loops together in a single equation (using nested summations),
 • and actually evaluate the nested summations… (can be hard)
TWO BIG-O ANALYSIS STRATEGIES

• Strategy 1
 • Prove a O-bound and a matching Ω-bound separately to get a Θ-bound.

• Strategy 2
 • Use Θ-bounds throughout the analysis and thereby obtain a Θ-bound for the complexity of the algorithm

Often easier (but not always)
Algorithm: *LoopAnalysis1*(\(n : integer\))
(1) \(sum \leftarrow 0\)
(2) \textbf{for } i \leftarrow 1 \textbf{ to } n
 \begin{align*}
 &\quad \textbf{for } j \leftarrow 1 \textbf{ to } i \\
 &\quad \quad \textbf{do } \begin{cases}
 &\quad \quad \quad \textbf{do } \begin{cases}
 &\quad \quad \quad \quad sum \leftarrow sum + (i - j)^2 \\
 &\quad \quad \quad \quad sum \leftarrow \lfloor sum/i \rfloor
 \end{cases}
 \end{cases}
 \end{align*}
(3) \textbf{return } (sum)
Strategy 1: big-O and big-Ω bounds

We focus on the two nested for loops (i.e., (2)).

The total number of iterations is \(\sum_{i=1}^{n} i \), with \(\Theta(1) \) time per iteration.

Upper bound:

\[
\sum_{i=1}^{n} O(i) \leq \sum_{i=1}^{n} O(n) = O(n^2).
\]

Lower bound:

\[
\sum_{i=1}^{n} \Omega(i) \geq \sum_{i=n/2}^{n} \Omega(i) \geq \sum_{i=n/2}^{n} \Omega(n/2) = \Omega(n^2/4) = \Omega(n^2).
\]

Since the upper and lower bounds match, the complexity is \(\Theta(n^2) \).
Strategy 2: use Θ-bounds throughout the analysis

Algorithm: *LoopAnalysis1*$(n: \text{integer})$

1. $\text{sum} \leftarrow 0$
2. for $i \leftarrow 1$ to n
 - for $j \leftarrow 1$ to i
 - do $\{$
 - do $\{$
 - $\text{sum} \leftarrow \text{sum} + (i - j)^2$
 - $\text{sum} \leftarrow \lfloor \text{sum}/i \rfloor$
 - $\}$
3. return (sum)

Θ-bound analysis

1. $\Theta(1)$
2. Complexity of inner for loop: $\Theta(i)$
 - Complexity of outer for loop: $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$
3. $\Theta(1)$

Total $\Theta(1) + \Theta(n^2) + \Theta(1) = \Theta(n^2)$

$$
\sum_{i=1}^{n} \Theta(i) = \Theta \left(\sum_{i=1}^{n} i \right) = \Theta \left(\frac{n(n+1)}{2} \right) = \Theta(n^2).
$$
EXAMPLE 2

Consider this loop alone... number of loop iterations?

\[j \text{ starts at } i \text{ and is repeatedly divided by } 2 \ldots \text{ this can happen only } \Theta(\log i) \text{ times} \]

So inner loop has runtime \(\Theta(\log i) \)

And the entire inner loop is executed for \(i = 1, 2, \ldots, n \)

So, we have \(T(n) \in \Theta(\sum_{i=1}^{n} \log i) \)

\[
T(n) \in O\left(\sum_{i=1}^{n} \log i\right) \subseteq O(n \log n)
\]

\[
T(n) \in \Omega\left(\sum_{i=1}^{n} \log i\right) \subseteq \Omega\left(\sum_{i=\frac{n}{2}}^{n} \log \frac{n}{2}\right) \subseteq \Omega(n \log n)
\]
... ANOTHER EXERCISE IN LOOP ANALYSIS?

Olive Garden waiter: Sir, you’ve already had 5 baskets of breadsticks
Me:

We’re done when I say we’re done
EXAMPLE 3 (BENTLEY’S PROBLEM, SOLUTION 1)

```
max := 0;
for i := 1 to n do 
  for j := i to n do 
    sum := 0;
    for k := i to j do
      sum := sum + A[k];
    if sum > max then max := sum;
```
Strategy 1: big-O and big-Ω bounds

\[
T(n) \in \Theta(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} \left(\Theta(1) + \sum_{k=i}^{j} \Theta(1) + \Theta(1) \right)
\]

\[
T(n) \in \sum_{i=1}^{n} \sum_{j=i}^{n} \Theta(j - i) \in \Theta \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j - i) \right)
\]

\[
T(n) \in O \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j - i) \right) \leq O \left(\sum_{i=1}^{n} \sum_{j=i}^{n} n \right)
\]

\[
\leq O \left(\sum_{i=1}^{n} \sum_{j=1}^{n} n \right)
\]

\[
T(n) \in O(n^3)
\]

This is the **maximum number of iterations** that could be performed in this loop.
Proving a big-Ω bound...

Recall:

\[T(n) \in \Theta \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i) \right) \]

\[T(n) \in \Omega \left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i) \right) \]

\[\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=i}^{n} (j-i) \right) \]

\[\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} (j-i) \right) \]

Intuition: \(j - i \) is \(\Omega(n) \) in some iterations. How many iterations? Lots?

To get a good Ω-bound, we ask questions like:
When do our loops have many iterations?
When is our dominant term large?

Many iterations: when our \(j \) loop does \(\Omega(n) \) iterations! For example, when \(i \leq n/2 \)...

Large dominant term: when \(j \) is much larger than \(i \) (i.e., by a factor of \(n \))
Proving a big-\(\Omega\) bound... continued

Recall:

\[
T(n) \in \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} (j - i) \right)
\]

\[
\geq \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} \left(\frac{3n}{4} - \frac{n}{2} \right) \right)
\]

\[
= \Omega \left(\sum_{i=1}^{n/2} \sum_{j=3n/4}^{n} \frac{n}{4} \right)
\]

\[
\geq \Omega \left(\frac{n}{2} \cdot \frac{n}{4} \cdot \frac{n}{4} \right) = \Omega(n^3)
\]

\[
\text{Smallest possible value of } j - i \text{ for these bounds on } i, j
\]

We will perform \textbf{at least this much} work in \textbf{every} iteration!

This term does \textbf{not} depend on the loop indexes, so just \textbf{multiply} by the total number of loop iterations...

Since we have \(O(n^3)\) and \(\Omega(n^3)\), we have \textbf{proved} \(\Theta(n^3)\)
BONUS

• Study-song of the day
• Tool - Descending
• youtu.be/PcSoLwFisaw