CS 341: ALGORITHMS

Lecture 10: graph algorithms I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
A graph is a pair \(G = (V, E) \)
- \(V \) contains vertices
- \(E \) contains edges
 - An edge \(uv \) connects two distinct vertices \(u, v \)
 - Also denoted \((u, v)\)
- Graphs can be undirected
- ... or directed
 - meaning \((u, v) \neq (v, u)\)
PROPERTIES OF GRAPHS

- Number of vertices $n = |V|$
- Number of edges $m = |E| \leq n(n - 1)$
 - Note m is in $O(n^2)$ but **not necessarily** $\Omega(n^2)$
 - For undirected graphs, $m \leq \frac{n(n-1)}{2}$
 - (Asymptotically, no different)

- Other common terminology:
 - vertices = nodes
 - edges = arcs

12 edges
$n(n - 1) = 4 \cdot 3$
A FEW MORE TERMS

• The **indegree** of a node u, denoted $\text{indeg}(u)$, is the number of edges directed into u

• The **outdegree**, denoted $\text{outdeg}(u)$, is the number of edges directed out from u

• The **neighbours** of u are the nodes u points to

 • Also called the **nodes adjacent to** u, denoted $\text{adj}(u)$

\[
\begin{align*}
\text{indeg}(u) &= 1 \\
\text{outdeg}(u) &= 2 \\
\text{adj}(u) &= \{1, 5\}
\end{align*}
\]
DATA STRUCTURES FOR GRAPHS

- Two main representations
 - Adjacency matrix
 - Adjacency list
- Each has pros & cons
ADJACENCY MATRIX REPRESENTATION

- $n \times n$ matrix $A = (a_{uv})$
 - rows & columns indexed by V
 - $a_{uv} = 1$ if (u, v) is an edge
 - $a_{uv} = 0$ if (u, v) is a non-edge
 - Diagonal = 0 (no self edges)
ADJACENCY MATRIX REPRESENTATION

- For undirected graphs
- $a_{uv} = 1$ if (u, v) or (v, u) is an edge
- Matrix is symmetric $A^T = A
IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - 2D array `bool adj[n][n]`
- What if nodes are not labeled 0..n-1?
 - Rename them in a preprocessing step
- What if you don’t have 2D arrays?
 - Transform 2D array index into 1D index
 - `adj[u][v] → adj[u*n + v]`
 - (can simplify with macros in C)
ADJACENCY LIST REPRESENTATION

- n linked lists, one for each node
- We write $\text{adj}[u]$ to denote the list for node u
- $\text{adj}[u]$ contains the labels of nodes it has edges to
ADJACENCY LIST REPRESENTATION

- For undirected graphs
- If $\text{adj}[u]$ contains v then $\text{adj}[v]$ also contains u
IMPLEMENTING ADJACENCY LISTS

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - Array of lists adj[n]
 - (In C++, something like an array of vector<int> would work)
Pros and Cons

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to test whether (u, v) is an edge</td>
<td>$O(1)$</td>
<td>$O(\text{outdeg}(u))$</td>
</tr>
<tr>
<td>Time to list neighbours of u</td>
<td>$O(n)$</td>
<td>$O(\text{outdeg}(u))$</td>
</tr>
<tr>
<td>Space complexity</td>
<td>$O(n^2)$</td>
<td>$O(n + m)$</td>
</tr>
</tbody>
</table>

Excellent when nodes have $O(1)$ neighbours

Can be better for dense graphs

Better if $o(n^2)$ edges

We call this a **sparse** graph
BREADTH FIRST SEARCH
A simple introduction to graph algorithms
BreadthFirstSearch(V[1..n], adj[1..n], s)

1. pred[1..n] = [null, null, ..., null]
2. dist[1..n] = [infty, infty, ..., infty]
3. colour[1..n] = [white, white, ..., white]
4. q = new queue
5. colour[s] = gray
6. dist[s] = 0
7. q.enqueue(s)

while q is not empty
8. u = q.dequeue()
9. for v in adj[u]
10. if colour[v] = white
11. pred[v] = u
12. colour[v] = gray
13. dist[v] = dist[u] + 1
14. q.enqueue(v)
15. colour[u] = black

return colour, pred, dist

Assuming adjacency list representation

- Undiscovered nodes are white
- Discovered nodes are gray
- Processing adjacent edges
- Finished nodes are black
- Adjacent nodes have been processed
- Connected graph: each node is eventually black
BreadthFirstSearch(V[1..n], adj[1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue

 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

 return colour, pred, dist
BreadthFirstSearch(V[1..n], adj[1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue
 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)

 colour[u] = black

 return colour, pred, dist

COMPLEXITY

O(n)
(with adjacency lists)

- Naïve loop analysis:
 - O(n) iterations * O(|adj[u]|) iterations
 - |adj[u]| ≤ n, so O(n^2)
Smarter loop analysis:

- For each u, iterate over all neighbours

- We touch each edge twice (doing $O(1)$ work each time)

- **Total contribution** of the inner loop to the runtime: $O(m)$
Smarter loop analysis:

- **Initialization time:** $O(n)$
- **Total contribution of the inner loop:** $O(m)$
 - (Over all iterations of the outer loop)
- **Additional contribution of the outer loop:** $O(n)$
- **Total runtime:** $O(m + n)$

Analytic expression for loop complexity:

$$T_{\text{LOOP}}(n) \in O\left(\sum_{u=1}^{n} (1 + \text{deg}(u))\right)$$

$$= O\left(n + \sum_{u=1}^{n} \text{deg}(u) \right) = O(n + m)$$
DIFFERENCES WITH ADJACENCY MATRICES

- Analysis is mostly similar
- But, it takes $O(n)$ time to determine which nodes are adjacent to u!
- This $O(n)$ cost is paid for each u, resulting in a total runtime $\in O(n^2)$
BFS TREE

- Connected graph: the `pred[]` array induces a tree
- The edges induced by `pred[]` are called tree edges
- Edges in the graph, but not in `pred`, are cross edges

Disconnected? Forest...

Careful: we will also see DFS trees, and cross edges will be defined differently.
BFS: PROOF OF OPTIMAL DISTANCES
DISTANCE IN GRAPH G AND BFS TREE T

- Denote $d_G(v)$ as the (optimal) distance between s and v in G.
- Denote $d_T(v)$ as the distance between s and v in the BFS tree T.
- Recall: $\text{dist}[v]$ is a value set by BFS for each node v.

Graph G:
- $d_G(v) = 3$
- $\text{dist}[3] = 1$
- $\text{dist}[5] = 2$
- $\text{dist}[v] = 3$
- $\text{dist}[s] = 0$

BFS Tree T:
- $d_T(v) = 3$
- $\text{dist}[v] = 3$
PROOF IDEA

Want to show: at the end of BFS, $\text{dist}[v] = d_G(v)$ for all v

Plan: prove this in two parts
Claim 1: $\text{dist}[v] = d_T(v)$
Claim 2: $d_T(v) = d_G(v)$
SKETCH OF CLAIM 1: \(\text{dist}[v] = d_T(v), \forall v \in V \)

Key observation: whenever we set \(\text{dist}[v] \leftarrow \text{dist}[u] + 1 \),
\(u \) is the parent of \(v \) in the BFS tree.

Based on this observation, a simple inductive proof shows \(\text{dist}[v] = d_T(v) \)

(for example, by strong induction on the nodes in the order their \(\text{dist} \) values are set---left as an exercise)
SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- **Part 1:** $\forall v, d_G(v) \leq d_T(v)$
 - There is a unique path $v \rightarrow \cdots \rightarrow s$ in T
 - And T is a **subgraph of** G
 - So that same path also exists in G (technically reversed)

To prove $=$, we show \leq and \geq
SKETCH OF CLAIM 2: \(d_T(v) = d_G(v) \)

- **Part 2:** \(\forall v, d_G(v) \geq d_T(v) \)
 - Partition \(T \) into **levels**
 \(V_i = \{ v : d_T(v) = i \} \) by distance from \(s \)
 - **Claim:** there is **no “forward” edge in** \(G \) that “skips” a level from \(V_i \) to \(V_j, j \geq i + 2 \)
 - Suppose there is, for contradiction...

What are the consequences of “skipping” a level in \(T \)?

But that edge in \(G \) would cause 7 to have \(s \) as its parent, so \(dist[7] \) would be **only 1 greater** than its parent...

Contradicts(!) the assumption that the edge points to a node with **greater distance by at least 2**

That “skip” edge in \(T \) looks like this in \(G \)
Part 2: \(\forall v, d_G(v) \geq d_T(v) \)

- We’ve just argued that there is no “forward” edge in \(G \) that “skips” a level in \(T \) from \(V_i \) to \(V_j, j \geq i + 2 \).

- Since no edge in \(G \) “skips” a level in \(T \), we know at least one edge in \(G \) is needed to traverse each level between \(s \in V_0 \) and \(v \in V_{d_T(v)} \).

- There are \(d_T(v) \) such levels, so \(d_G(v) \geq d_T(v) \).
Fact: there are no “back” edges in undirected graphs that “skip” a level going up in the BFS tree.

Exercise: what about directed graphs?

Answer in bonus slides...
APPLICATION:
FINDING SHORTEST PATHS
User interfaces: rubber-banding a **mouse cursor** around obstacles
Starting to get into the details

Game AI: path finding in a grid-graph

How to represent a grid graph?

BFS from here

SCORE: 0
HOW TO OUTPUT AN ACTUAL PATH

- Suppose you want to output a path from s to v with minimum distance (not just the distance to v)
- Algorithm (what do you think?)
 - Similar to extracting an answer from a DP array!
 - Work backwards through the predecessors
 - Note: this will print the path in reverse! Solution?
Shortest path to here?

BFS from here

Each time you visit a predecessor, push it into a stack

I.e., push \(v = 5 \), then push \(\text{pred}[v] = 4 \), then push \(\text{pred}[\text{pred}[v]] = 3 \), then 2, ...

At the end, pop all off the stack. This gives 0, 1, 2, ..., 5 = the path!
APPLICATION:
UNDIRECTED CONNECTED COMPONENTS
CONNECTED COMPONENTS

- Example: undirected graph with three components

Can you think of a way to use BFS to count how many connected components there are?
CONNECTED COMPONENTS

- BreadthFirstSearch(V, adj, 1)
- BreadthFirstSearch(V, adj, 3)
- BreadthFirstSearch(V, adj, 4)

Modified BFS that (1) reuses the same colour array for consecutive calls and (2) sets comp[u] = compNum for each node u it visits.

Can be done in $O(n + m)$ time.

```python
def UndirectedConnectedComponents(adj[1..n]):
    colour[1..n] = [white, ..., white]
    comp[1..n] = [0, ..., 0]
    compNum = 1
    for start = 1..n
        if colour[start] is white
            BFS(adj, start, colour, comp, compNum)
            compNum = compNum + 1
    return comp
```
BONUS SLIDES
ANSWER TO BFS TREE PROPERTY EXERCISE...

Dotted = back edge