Let's first solve for the length of the LCS

Possibility greedy solutions?
- Alg: for each \(x_i \in X \), try to choose a matching \(y_j \in Y \) that is to the right of all previously chosen \(y_j \) values
 - \(X = \text{bracadabra} \) \(Y = \text{bracadabra} \)
 - \(X = \text{bracadabra} \) \(Y = \text{bracadabra} \)
 - \(X = \text{bracadabra} \) \(Y = \text{bracadabra} \) (no \(y_j \) after \(z \))
 - \(X = \text{bracadabra} \) \(Y = \text{bracadabra} \) (no \(y_j \) after \(z \))
 - \(Z = \text{abe} \)
 - \(Z = \text{abe} \)
 - \(Z = \text{abe} \)

Blindly taking is bad. How to decide whether to take or leave if...

Similar greedy alg that goes right-to-left works for this input...

Try both possibilities (brute force / dynamic programming)

Defining subproblems
- Full problem: return \([\text{LCS}(X, Y)]\) (i.e. length of LCS)
- Reduce size by taking prefixes of \(X \) or \(Y \)
 - Let \(X_1 = (x_1, \ldots, x_t) \) and \(Y_1 = (y_1, \ldots, y_t) \)
 - Note \(X = X_m \) and \(Y = Y_n \)
 - Subproblem: return \([\text{LCS}(X_1, Y_1)] \)
 - Idea for recurrence: remove the last letter of \(X \) or \(Y \)
Example #1 to Build Intuition

- $x = bba$, $y = abab$, $z = abba$
- $LCS(x, y) = abc$
- $LCS(y, z) = cba$
- $c = 1$

- **Finding y_i**
 - $y_i = c$ must appear in y_{i+1}
 - y_i cannot be the first a in y

- **Finding x_i**
 - x_i cannot be the first a in x
 - If y_i is a part of z then y_{i+1} must appear in x_{i+1}

Example #2

- **Finding y_i**
 - $y_i = a$ must appear in y_{i+1}
 - y_i cannot be the first a in y

- **Finding x_i**
 - x_i cannot be the first a in x
 - The y_{i+1} cannot be the first a in y

Example #3

- **Finding y_i**
 - $y_i = c$ must appear in y_{i+1}
 - y_i cannot be the first a in y

- **Finding x_i**
 - x_i cannot be the first a in x
 - The y_{i+1} cannot be the first a in y

Summarizing Cases

- x_i matches neither x_m nor y_k ($x_m = y_k$)
 - $Z = LCS(x_m, y_{m+1})$
- x_i matches x_m but not y_k ($x_m = y_k$)
 - $Z = LCS(x_m, y_{m+1})$
- x_i matches y_k but not x_m ($x_m = y_k$)
 - $Z = LCS(x_{m+1}, y_k)$
- x_i matches both ($x_m = y_k$)
 - $Z = LCS(x_{m+1}, y_k) + x_i$

But we don’t know x_i

- Try all cases and maximize
- **Careful! last case is only valid if $x_m = y_k$**
- Also note $x_m = y_k$ only holds in the last case
- Cases 2 & 3: trivial
- Case 1: if $x_m = y_k \neq x_i$ then we can improve Z (contra)

Deriving a Recurrence

- Recall $Z = LCS(x_m, y_k)$
- $c(i, j) = |LCS(x_i, y_j)|$

- **Finding y_i**
 - $i = 0$, one string is empty, so $c(0, j) = 0$ (similarly for $j = 0$)

- **General cases**

0. $c(i, j) = c(i - 1, j - 1) + 1$ if $x_m \neq y_k$
1. $c(i, j) = \max(c(i - 1, j), c(i, j - 1))$ if $x_m \neq y_k$

Recurrent

- **Combining expressions**
 - $c(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c(i - 1, j - 1) + 1 & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\ \max(c(i, j - 1), c(i - 1, j)) & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$

- **Can simplify**
 - $c(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c(i - 1, j - 1) + 1 & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\ \max(c(i, j - 1), c(i - 1, j)) & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$
Suppose \(X = \text{gvegta} \) and \(Y = \text{gvckst} \)

<table>
<thead>
<tr>
<th>(Y)</th>
<th>g</th>
<th>v</th>
<th>e</th>
<th>g</th>
<th>v</th>
<th>c</th>
<th>t</th>
<th>s</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>o</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

\[
e(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ e((i-1,j-1)) + 1 & \text{if } i \geq 1 \text{ and } j \geq 1, x_i = y_j \\ \max(e((i-1,j)),e((i,j-1))) & \text{if } i \geq 1 \text{ and } j \geq 1, x_i \neq y_j \\ \end{cases}
\]

PSEUDOCODE

Algorithm: \(\text{LCS}(X = \{x_1, \ldots, x_m\}, Y = \{y_1, \ldots, y_n\}) \)

for \(i = 1 \) to \(m \)

\(e(0,0) = 0 \)

for \(j = 1 \) to \(n \)

\(e(0,j) = 0 \)

for \(i = 1 \) to \(m \)

for \(j = 1 \) to \(n \)

if \(x_i = y_j \)

\(e(i,j) = e(i-1,j-1) + 1 \)

else

\(e(i,j) = \max(e(i-1,j),e(i,j-1)) \)

return \(e(m,n) \).

COMPUTING THE LCS

Not Just Its Length

To make it easy to find the actual LCS (not just its length),

Consider each table entry used to calculate \(e(i,j) \)

<table>
<thead>
<tr>
<th>Case 1: (e(i,j) = e(i-1,j))</th>
<th>Case 2: (e(i,j) = e(i,j-1))</th>
<th>Case 3: (e(i,j) = e(i-1,j-1) + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>We store "I" in (e(i,j)) to indicate that (x_i) is in the LCS.</td>
<td>We store "V" in (e(i,j)) to indicate that (y_j) is in the LCS.</td>
<td>We store "D" in (e(i,j)) to indicate that (x_i = y_j) and (x_i) and (y_j) are both included in the LCS.</td>
</tr>
</tbody>
</table>

In our example table we just draw an arrow to the entry...

Recall in this case, \(x_i \neq y_j \) so we include \(y_j \) in the LCS.

SAVING THE DIRECTION TO THE PREDECESSOR SUBPROBLEM π

Case: \(e(i,j) = e(i-1,j) + 1 \)

We store "D" in \(e(i,j) \) to indicate that \(x_i \) is in the LCS.

Recall in this case, \(x_i = y_j \) so we include \(y_j \) in the LCS.

Case: \(e(i,j) = e(i,j-1) \)

We store "I" in \(e(i,j) \) to indicate that \(x_i \) is in the LCS.

Case: \(e(i,j) = e(i-1,j-1) + 1 \)

We store "V" in \(e(i,j) \) to indicate that \(y_j \) is in the LCS.

Case: \(e(i,j) = e(i-1,j-1) \)

We store "D" in \(e(i,j) \) to indicate that \(x_i = y_j \) and \(x_i \) and \(y_j \) are both included in the LCS.

Example

Suppose \(X = \text{gvegta} \) and \(Y = \text{gvckst} \). How to obtain LCS?
Complexities of this trace-back algo: Space? Time? (word RAM model)

- Space: $O(n+m)$ words
- Time: $O(n+m)$

How many triangulations are there?

Number of triangulations of a convex n-gon = the n-th Catalan number

This is $C_{n-2} = \frac{1}{n-2} \binom{2n-4}{n-2}$

It can be shown that $C_{n-2} \in \Theta(4^{n/2})$

Problem: Minimum length triangulation

- Input: n points $q_1, ..., q_n$ in 2D space that form a convex n-gon P
- Assume points are sorted clockwise around the center of P
- Find: a triangulation of P such that the sum of the perimeters of the $n-2$ triangles is minimized
- Output: the sum of the perimeters of the triangles in P

Problem decomposition

The edge q_kq_1 is in a triangle with a third vertex q_{n-1}, where $k \in \{2, ..., n-3\}$.

For a given k, we have:
- the triangle $q_kq_{n-1}q_{n}$ (1)
- the polygon with vertices $q_1, ..., q_{n-1}$ (2)
PROBLEM DECOMPOSITION

The edge q_k is in a triangle with a third vertex q_i, where $k \in \{2, \ldots, n-1\}$.

For a given k, we have:
- the triangle $q_i q_k q_j$ (1)
- the polygon with vertices q_1, \ldots, q_{k-1} (2)
- the polygon with vertices q_k, \ldots, q_n (3)

The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).

RECURSION RELATION

- Let $S(i,j)$ be the optimal solution to the subproblem consisting of the polygon with vertices q_i, \ldots, q_j.
- Let Δ_{ij} denote $\text{perimeter}(q_i q_k q_j)$.
- If a given point q_k is in the optimal solution, then $S(i,j) = S(i,k) + \Delta_{ij} + S(k,j)$.

FILLING IN THE TABLE

- Table $S(1, n)$ of solutions to $S(i,j)$ for all $i, j \in \{1, n\}$.

- Dependencies:
 - $S(i, j)$ and $S(j, i)$ for $k = i+1, \ldots, j-1$.
 - $S(i, j)$ and $S(i, k)$ for $k = i+1, \ldots, j-1$.
 - $S(i, j)$ and $S(k, j)$ for $k = i+1, \ldots, j-1$.

- We depend on larger i and same (but smaller) j.

What's a correct fill order? For $i = n$, for $j = 1$.
RUNTIME

WORD RAM MODEL

- Number of subproblems: \(n^2 \)
- Time to solve subproblem \(S(i,j): O(j - i) \leq O(n) \)
- So total runtime is in \(O(n^3) \)
- More effort needed to show \(\Omega(n^3) \), since so many subproblems are base cases, which take \(\Theta(1) \) steps
- Incidentally, this is polynomial time (\(n \) the input size)
- But basic runtime analysis does not require such an argument

MEMOIZATION: AN ALTERNATIVE TO DP

Recall that the goal of dynamic programming is to eliminate solving subproblems more than once.

Memoization is another way to accomplish the same goal.

Memoization is a recursive algorithm based on same recurrence relation as would be used by a dynamic programming algorithm.

The idea is to remember which subproblems have been solved; if the same subproblem is encountered more than once during the recursion, the solution will be looked up in a table rather than being re-computed.

This is easy to do if initialize a table of all possible subproblems having the value undefined in every entry.

Whenever a subproblem is solved, the table entry is updated.

EXAMPLE: USING MEMOIZATION TO COMPUTE FIBONACCI NUMBERS EFFICIENTLY

```plaintext
main
for i ← 2 to n
    do M[i] ← −1
return (RecFib(n))

procedure RecFib(n)
if n = 0 then f ← 0
else if n = 1 then f ← 1
else if M[n] ≠ −1 then f ← M[n]
else
f1 ← RecFib(n − 1)
f2 ← RecFib(n − 2)
f ← f1 + f2
M[n] ← f
return (f)
```

VISUALIZING MEMOIZATION

MODEL COMPARISON

<table>
<thead>
<tr>
<th>Model</th>
<th>Word RAM</th>
<th>BF complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Words have unlimited size</td>
<td>- Variables can have different numbers of bits</td>
</tr>
<tr>
<td></td>
<td>Each word is a single word</td>
<td>- Variables are 1 bit each</td>
</tr>
<tr>
<td></td>
<td>Each variable is a bit string</td>
<td>- Space complexity is the number of bits used (excluding the input)</td>
</tr>
<tr>
<td></td>
<td>All words have the same size</td>
<td>- Time complexity is (O(</td>
</tr>
<tr>
<td></td>
<td>Runtime is the number of operations on words (where each word operation takes (O(1)) time)</td>
<td>- Size is (1) or (0) in (O(</td>
</tr>
<tr>
<td></td>
<td>Move((\text{write} \rightarrow \text{read}))</td>
<td>- Add is (x + y) in (O(</td>
</tr>
<tr>
<td></td>
<td>Add((x \rightarrow x + y))</td>
<td>- And is (x & y) in (O(</td>
</tr>
<tr>
<td></td>
<td>And((x & y \rightarrow \text{nop}))</td>
<td>- Space complexity is the number of bits used (excluding the input)</td>
</tr>
</tbody>
</table>

BONUS CLARIFICATION MATERIAL
CALCULATIONS USING INPUT SIZE

• Clarification: you can compute space/time complexity without calculating the input size
• Input size calculations are typically only needed if we ask you to show an algorithm runs in polytime
• “Runs in polytime” means the runtime is at most a polynomial in the number of bits in the input
• Lots of this in tractability / NP completeness
• Just trying to expose you to these ideas ahead of time...

SO... IS DP LCS A POLYTIME ALGORITHM?

• Is nm polynomial in the input size (# of bits in the input)?
• Word RAM model
 • Input contains Θ(n + m) words
 • Word RAM model says each word stores Θ(log w) bits
 where w = # words in the input
 • So in this case, Θ(log(n + m)) bits per word
 • So θ ∈ Θ((n + m) log(n + m))
 • Want a term that looks like \(\text{time} \)

SO... IS DP LCS A POLYTIME ALGORITHM?

• Try squaring: \(S^2 \in \Theta((n + m) \log(n + m)^2) \)
• \(\Theta(n^2 \log^2(n + m) + nm \log^2(n + m) + m^2 \log^2(n + m)) \)
• Of course, \(nm \in O(nm \log^2(n + m)) \)
• ... which is just one of the terms of \(S^2 \)
• So \(nm \in O(S^2) \)
• So the runtime is polynomial in the input size (in bits)
 • But this was ugly. Is there a simpler approach?

SO... IS DP LCS A POLYTIME ALGORITHM?

• Calculation using words would be simpler...
 • \textbf{Words in the input} \(W \in O(n + m) \)
 • \(W^2 \in O((n + m)^2) = O(n^2 + nm + m^2) \)
 • So \(\Theta(n) \leq \Theta(W^2) \)
 • I.e., polynomial in the # of words in the input
 • How does this help us?
 • \# words \(W \) in the input \(\leq \# \text{ bits } S \) in the input
 • So \(O(nm) \leq O(W^2) \) \textbf{implies} \(O(nm) \leq O(S^2) \)