Problem 5.3

Longest Common Subsequence

Instance: Two sequences $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_n)$ over some finite alphabet Γ.

Find: A maximum length sequence Z that is a subsequence of both X and Y.

$Z = (z_1, \ldots, z_\ell)$ is a subsequence of X if there exist indices $1 \leq i_1 < \cdots < i_\ell \leq m$ such that $z_j = x_{i_j}$, $1 \leq j \leq \ell$.

Similarly, Z is a subsequence of Y if there exist (possibly different) indices $1 \leq h_1 < \cdots < h_\ell \leq n$ such that $z_j = y_{h_j}$, $1 \leq j \leq \ell$.

Let’s first solve for the length of the LCS
EXAMPLES

• X=aaaaa Y=bbbbbb Z=LCS(X,Y)=?
 • Z=ε (empty sequence)
• X=abcde Y=bcd Z=LCS(X,Y)=?
 • Z=bcd
• X=abcde Y=labcdef Z=LCS(X,Y)=?
 • Z=abe
POSSIBLE GREEDY SOLUTIONS?

• Alg: for each $x_i \in X$, try to choose a matching $y_j \in Y$ that is to the right of all previously chosen y_j values

 • $X=\text{abcde}$ \hspace{1cm} Y=\text{labcdef}$
 • $X=\text{abcde}$ \hspace{1cm} Y=\text{labcdef}$
 • $X=\text{abcde}$ \hspace{1cm} Y=\text{labcdef} [no suitable y_j found]
 • $X=\text{abcde}$ \hspace{1cm} Y=\text{labcdef} [no suitable y_j found]
 • $X=\text{abcd}\text{e}$ \hspace{1cm} Y=\text{labcdef}$
 • $Z=\text{abe}$ \hspace{1cm} Optimal?
POSSIBLE GREEDY SOLUTIONS?

• Alg: for each \(x_i \in X \), try to choose a matching \(y_j \in Y \) that is to the right of all previously chosen \(y_j \) values

 • \(X=azbracadabra \) \(Y=abracadabraz \)
 • \(X=azbracadabra \) \(Y=abracadabraz \)
 • \(X=azbracadabra \) \(Y=abracadabraz \) [no \(y_j \) after \(z \)]

Blindly taking \(z \) is bad. **How to decide** whether to take or leave \(z \)?

Try **both** possibilities!
(Brute force / dynamic programming)

Similar greedy alg that goes right-to-left works for this input, but fails for other inputs.

• \(Z=azbracadabra \) Optimal?
DEFINING SUBPROBLEMS

- **Full problem:** return $|\text{LCS}(X, Y)|$ (i.e., length of LCS)
 - Reduce size by taking **prefixes** of X or Y
 - Let $X_i = (x_1, \ldots, x_i)$ and $Y_i = (y_1, \ldots, y_i)$

<table>
<thead>
<tr>
<th>X_m</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>...</th>
<th>x_{m-1}</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_4</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note $X = X_m$ and $Y = Y_n$

- **Subproblem:** return $|\text{LCS}(X_i, Y_j)|$

- **Idea for recurrence:** remove the last letter of X or $Y
Consider optimal solution $Z = \text{LCS}(X, Y)$.

This cannot be the final a in Z.

Neither of these is part of Z.

This cannot be the final a in Z.

Since Z is a subsequence of X, $z_\ell = a$ must appear in X_{m-1}.

Since $x_m, y_n \notin Z$ we know $Z = \text{LCS}(X_{m-1}, Y_{n-1})$.
BUILDING SOLUTIONS FROM SUBPROBLEMS

EXAMPLE #2

Let's analyze the sequences X, Y, and Z:

- **X**:

 $\begin{array}{cccccc}
 a & b & r & a & c & a \\
 x_1 & x_2 & x_3 & x_4 & \ldots & x_{m-1} & x_m
 \end{array}$

- **Y**:

 $\begin{array}{cccccccc}
 a & z & b & r & a & c & a & d & a \\
 y_1 & y_2 & y_3 & y_4 & \ldots & y_{n-1} & y_n
 \end{array}$

- **Z**:

 $\begin{array}{cccc}
 a & b & r & a & c & a \\
 z_1 & z_2 & z_3 & \ldots & z_{\ell-1} & z_{\ell}
 \end{array}$

Observations:

1. **This might be the final a in Z** when $z_{\ell} = a$.
2. **But this certainly is not :)** since $y_n \notin Z$.
3. **Since Z is a subsequence of Y, $z_{\ell} = a$ must appear in Y_{n-1}**.
4. **Case $x_m \notin Z, y_n \in Z$** is symmetric.

Conclusion:

- **Since $y_n \notin Z$ we know $Z = LCS(X, Y_{n-1})$**.
- **$Z = LCS(X_{m-1}, Y)$**

By analyzing these sequences and their subsequences, we can build solutions from subproblems efficiently.
Then we have $Z = \text{LCS}(X_{m-1}, Y_{n-1}) + z_\ell$

Or maybe this is...

This might be the final a in Z

This might be the final a in Z

Consume x_m and y_n by matching with z_ℓ
SUMMARIZING CASES

• z_ℓ matches **neither** x_m nor y_n
 $Z = \text{LCS}(X_{m-1}, Y_{n-1})$

• z_ℓ matches x_m but not y_n
 $Z = \text{LCS}(X_m, Y_{n-1})$

• z_ℓ matches y_n but not x_m
 $Z = \text{LCS}(X_{m-1}, Y_n)$

• z_ℓ matches **both**
 $Z = \text{LCS}(X_{m-1}, Y_{n-1}) + z_\ell$

• **... but we don’t know** z_ℓ

 • Try all cases and maximize

 • **Careful: last case is only valid if** $x_m = y_n$

• Also note $x_m = y_n$ **only holds in the last case**

 • Cases 2&3: trivial

 • Case 1: if $x_m = y_n \neq z_\ell$ then we can improve Z (contra)
DERIVING A RECURRENCE

• z_ℓ matches neither x_m nor y_n \hspace{1cm} (x_m \neq y_n) \quad Z = \text{LCS}(X_{m-1}, Y_{n-1})$

• z_ℓ matches x_m but not y_n \hspace{1cm} (x_m \neq y_n) \quad Z = \text{LCS}(X_m, Y_{n-1})$

• z_ℓ matches y_n but not x_m \hspace{1cm} (x_m \neq y_n) \quad Z = \text{LCS}(X_{m-1}, Y_n)$

• z_ℓ matches both \hspace{1cm} (x_m = y_n) \quad Z = \text{LCS}(X_{m-1}, Y_{n-1}) + z_\ell$

• Let $c(i, j) = |\text{LCS}(X_i, Y_j)|$

• Brainstorming sensible base cases
 • $i = 0$ \quad one string is empty, so $c(0, j) = 0$ (similarly for $j = 0$)

• General cases

\[
\begin{align*}
c(i, j) &= c(i - 1, j - 1) + 1 & \text{if } x_m = y_n \\
c(i, j) &= \max\{c(i - 1, j - 1), c(i, j - 1), c(i - 1, j)\} & \text{if } x_m \neq y_n
\end{align*}
\]
RECURSION

• Combining expressions

\[c(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\frac{c(i - 1, j - 1) + 1}{\text{if } i, j \geq 1 \text{ and } x_i = y_j} \\
\max\{c(i, j - 1), c(i - 1, j), c(i - 1, j - 1)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{cases} \]

• Can simplify!

 • Observe \(c(i - 1, j - 1) \leq c(i - 1, j) \) (former is a subproblem of the latter)

\[c(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\frac{c(i - 1, j - 1) + 1}{\text{if } i, j \geq 1 \text{ and } x_i = y_j} \\
\max\{c(i, j - 1), c(i - 1, j)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{cases} \]
Suppose \(X = \text{gdvegta} \) and \(Y = \text{gvcekst} \)

| \(Y \) | \(i = 0 \) | \(g \) | \(d \) | \(v \) | \(e \) | \(g \) | \(t \) | \(a \) |
|---|---|---|---|---|---|---|---|
| \(j = 0 \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| \(g \) | 1 | Q3 | 1 | Q6 |
| \(v \) | 2 | Q4 | 1 | Q7 |
| \(c \) | 3 | Q5 | | |
| \(e \) | 4 | | | |
| \(k \) | 5 | | | |
| \(s \) | 6 | | | |
| \(t \) | 7 | | | |

Question 1

- \(c(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\ c(i - 1, j - 1) + 1 & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\
\ \max\{c(i, j - 1), c(i - 1, j)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{cases} \)
Suppose $X = gdvegta$ and $Y = gvcekst$

\[
c(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
(c(i-1, j-1) + 1 & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\
\max\{c(i, j-1), c(i-1, j)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{cases}
\]
Algorithm: \(\text{LCS1}(X = (x_1, \ldots, x_m), Y = (y_1, \ldots, y_n)) \)

\[
c(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\begin{align*}
&c(i - 1, j - 1) + 1 & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\
&\max\{c(i, j - 1), c(i - 1, j)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{align*}
\end{cases}
\]

for \(i \leftarrow 0 \) to \(m \)
\[
c[i, 0] \leftarrow 0
\]

for \(j \leftarrow 0 \) to \(n \)
\[
c[0, j] \leftarrow 0
\]

for \(i \leftarrow 1 \) to \(m \)

for \(j \leftarrow 1 \) to \(n \)

if \(x_i = y_j \)
\[
\text{then } c[i, j] \leftarrow c[i - 1, j - 1] + 1
\]

else \(c[i, j] \leftarrow \max\{c[i, j - 1], c[i - 1, j]\} \)

return \((c[m, n]) \);
To make it easy to find the actual LCS (not just its length),

Consider which table entry was used to calculate $c[i, j]$

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
(c(i - 1, j - 1) + 1) & \text{if } i, j \geq 1 \text{ and } x_i = y_j \\
\max\{c(i, j - 1), c(i - 1, j)\} & \text{if } i, j \geq 1 \text{ and } x_i \neq y_j
\end{cases}$$

We store the direction to that entry in an array $\pi[i, j]$

Case 1: $c(i, j) = c(i, j - 1)$
We store “J” in $\pi[i, j]$ to indicate decrementing j (to get $i, j - 1$)

Case 2: $c(i, j) = c(i - 1, j)$
We store “I” in $\pi[i, j]$ to indicate decrementing i (to get $i - 1, j$)

Case 3: $c(i, j) = c(i - 1, j - 1) + 1$
We store “IJ” in $\pi[i, j]$ to indicate decrementing both i and j

Recall in this case, $x_i = y_j$ so we include x_i in the LCS

In our example table we just draw an arrow to the entry...
SAVING THE DIRECTION TO
THE PREDECESSOR SUBPROBLEM π

```
LCS2(X[1..m], Y[1..n])
    c = new array[0..m][0..n]
    π = new array[0..m][0..n]
    for i = 0..m do c[i][0] = 0
    for j = 0..n do c[0][j] = 0
    for i = 1..m
        for j = 1..n
            if X[i] = Y[j]
                c[i][j] = c[i-1][j-1] + 1
                π[i][j] = "IJ"
            else if c[i][j-1] > c[i-1][j]
                c[i][j] = c[i][j-1]
                π[i][j] = "J"
            else // c[i][j-1] <= c[i-1][j]
                c[i][j] = c[i-1][j]
                π[i][j] = "I"
    return c, π
```

Case: c(i, j) = c(i − 1, j − 1) + 1

We store “IJ” in π[i, j] to indicate decrementing both i and j.

Case: c(i, j) = c(i, j − 1)

We store “J” in π[i, j] to indicate decrementing j (to get i, j − 1).

Case: c(i, j) = c(i − 1, j)

We store “I” in π[i, j] to indicate decrementing i (to get i − 1, j).

Recall in this case, x_i = y_j so we include x_i in the LCS.
Suppose $X = gdvegta$ and $Y = gvcekst$.

<table>
<thead>
<tr>
<th>Y</th>
<th>$i = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>k</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>s</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Example

- **seq=gvet**
- **seq=et**
- **seq=vet**
- **seq=t**

Done: seq=gvet

How to obtain LCS=gvet from this table?

- this “a” is not in seq=t

- this is.
Following predecessors to compute the LCS

```
1  FindLCS(c[0..m][0..n], π[0..m][0..n], X[0..m])
2    lcs = new string
3    i = m
4    j = n
5
6    while i>0 and j>0
7        if π[i][j] == "IJ"
8            lcs.append(X[i])
9                i--
10                j--
11        else if π[i][j] == "J"
12            j--
13        else // π[i][j] == "I"
14            i--
15
16    return reverse(lcs)
```
PROBLEM: MINIMUM LENGTH TRIANGULATION

• **Input:** \(n \) points \(q_1, ..., q_n \) in 2D space that form a **convex** \(n \)-gon \(P \)

• Assume points are **sorted clockwise** around the center of \(P \)

• **Find:** a triangulation of \(P \) such that the sum of the perimeters of the \(n - 2 \) triangles is minimized

• **Output:** the sum of the **perimeters** of the triangles in \(P \)
How many triangulations are there?

Number of triangulations of a convex n-gon = the $(n - 2)$nd Catalan number

This is $C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}$

It can be shown that $C_{n-2} \in \Theta\left(\frac{4^n}{(n - 2)^{3/2}}\right)$
The edge $q_n q_1$ is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n - 1\}$.
The edge $q_n q_1$ is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n - 1\}$.

For a given k, we have:

the triangle $q_1 q_k q_n$, \hspace{1cm} (1)
The edge $q_n q_1$ is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n-1\}$.

For a given k, we have:

- the triangle $q_1 q_k q_n$, \hspace{0.5cm} (1)
- the polygon with vertices q_1, \ldots, q_k, \hspace{0.5cm} (2)
The edge $q_n q_1$ is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n - 1\}$.

For a given k, we have:

- the triangle $q_1 q_k q_n$, \hspace{1cm} (1)
- the polygon with vertices q_1, \ldots, q_k, \hspace{1cm} (2)
- the polygon with vertices q_k, \ldots, q_n. \hspace{1cm} (3)
The edge q_nq_1 is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n-1\}$.

For a given k, we have:

- the triangle $q_1q_kq_n$, \hspace{1cm} (1)
- the polygon with vertices q_1, \ldots, q_k, \hspace{1cm} (2)
- the polygon with vertices q_k, \ldots, q_n. \hspace{1cm} (3)

The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).
The edge q_nq_1 is in a triangle with a third vertex q_k, where $k \in \{2, \ldots, n-1\}$.

For a given k, we have:

the triangle $q_1q_kq_n$, \hspace{1cm} (1)
the polygon with vertices q_1, \ldots, q_k, \hspace{1cm} (2)
the polygon with vertices q_k, \ldots, q_n. \hspace{1cm} (3)

The optimal solution will consist of optimal solutions to the two subproblems in (2) and (3), along with the triangle in (1).
RECURRENCE RELATION

• Let $S(i, j) = \text{optimal solution to the subproblem consisting of the polygon with vertices } q_i \ldots q_j$

• Let Δ_{ijk} denote $\text{perimeter}(q_i, q_j, q_k)$

• If a given triangle q_i, q_j, q_k is in the optimal solution, then $S(i, j) = S(i, k) + \Delta_{ijk} + S(k, j)$
RECURSION RELATION

• But we don’t know the optimal k

• Minimize over all k strictly between i and j

$$S(i, k) = \begin{cases}
\min_{i<k<j} \{ S(i, k) + \Delta_{ijk} + S(k, j) \} & \text{if } j \geq i + 2 \\
0 & \text{otherwise}
\end{cases}$$
$$S(i, j) = \begin{cases} \min_{i < k < j} \{S(i, k) + \Delta_{ijk} + S(k, j)\} & \text{if } j \geq i + 2 \\ 0 & \text{otherwise} \end{cases}$$

- Table $S[1..n, 1..n]$ of solutions to $S(i, j)$ for all $i, j \in \{1..n\}$

Dependencies:
$S[i, k]$ and $S[k, j]$
For $k = (i + 1) \ldots (j - 1)$

$S[i, k]$:
$S[i, i + 1] \ldots S[i, j - 1]$

$S[k, j]$:
$S[i + 1, j] \ldots S[j - 1, j]$

We depend on larger i
And same i but smaller j

What's a correct fill order?
for $i = n \ldots 1$, for $j = 1 \ldots n$
• Number of subproblems: n^2
• Time to solve subproblem $S(i, j)$: $O(j - i) \subseteq O(n)$
• So total runtime is in $O(n^3)$
 • More effort needed to show $\Omega(n^3)$, since so many subproblems are base cases, which take $\Theta(1)$ steps
• Incidentally, this is polynomial time (in the input size)
 • But basic runtime analysis does not require such an argument
MEMOIZATION: AN ALTERNATIVE TO DP

Recall that the goal of dynamic programming is to eliminate solving subproblems more than once.

Memoization is another way to accomplish the same goal. Memoization is a recursive algorithm based on the same recurrence relation that would be used by a dynamic programming algorithm.

The idea is to remember which subproblems have been solved; if the same subproblem is encountered more than once during the recursion, the solution will be looked up in a table rather than being re-calculated.

This is easy to do if initialize a table of all possible subproblems having the value undefined in every entry.

Whenever a subproblem is solved, the table entry is updated.
main

for $i \leftarrow 2$ to n
do $M[i] \leftarrow -1$
return $(\text{RecFib}(n))$

procedure $\text{RecFib}(n)$

if $n = 0$ then $f \leftarrow 0$
else if $n = 1$ then $f \leftarrow 1$
else if $M[n] \neq -1$ then $f \leftarrow M[n]$
else $\begin{cases} f_1 \leftarrow \text{RecFib}(n - 1) \\ f_2 \leftarrow \text{RecFib}(n - 2) \end{cases}$
else $\begin{cases} f \leftarrow f_1 + f_2 \\ M[n] \leftarrow f \end{cases}$
return (f);

If $M[n]$ is already computed, don’t recurse!
If \(M[n] \) is already computed, don't recurse!

procedure \(\text{RecFib}(n) \)

if \(n = 0 \) then \(f \leftarrow 0 \)

else if \(n = 1 \) then \(f \leftarrow 1 \)

else if \(M[n] \neq -1 \) then \(f \leftarrow M[n] \)

else
 \[
 \begin{align*}
 f_1 & \leftarrow \text{RecFib}(n - 1) \\
 f_2 & \leftarrow \text{RecFib}(n - 2) \\
 f & \leftarrow f_1 + f_2 \\
 M[n] & \leftarrow f
 \end{align*}
 \]

return \((f)\);
BONUS CLARIFICATION MATERIAL
MODEL COMPARISON

Word RAM
- Each variable (or array entry, etc.) \(x \) is a **word**
- All words have the same size
 - \(O(\log W) \) bits where \(W \) = \# of words in the input
 (not realistic if variables contain big numbers!)
- **Runtime** is the number of **operations on words**
 (where each **word** operation takes \(O(1) \) time)
 - Read/write in \(O(1) \)
 - Add in \(O(1) \)
 - Multiply in \(O(1) \)
- **Space complexity** is the **number of words** used
 (excluding the input)

Bit complexity
- Each variable \(x \) is a **bit string**
- Variables can have different numbers of bits
 - \(x \) is encoded in \(O(\log x) \) bits
- **Runtime** is the number of **operations on bits**
 (where each **bit** operation takes \(O(1) \) time)
 - Read/write in \(O(\log x) \) \((\log x = \# \text{ bits in } x) \)
 - Add \(x + y \) in \(O(\log x + \log y) \)
 - Multiply in \(O(\log x \times \log y) \)
- **Space complexity** is the **number of bits** used
 (excluding the input)

Unit cost model (not used anymore)
- Words have **unlimited** size
- But still \(O(1) \) access time
CALCULATIONS USING INPUT SIZE

• Clarification: you can compute space/time complexity without calculating the input size
• Input size calculations are typically only needed if we ask you to show an algorithm runs in polytime
 • “runs in polytime” means the runtime is at most a polynomial in the number of bits in the input
 • Lots of this in tractability / NP completeness
• Just trying to expose you to these ideas ahead of time…
SO... IS DP LCS A POLYTIME ALGORITHM?

• Is nm polynomial in the input size (# of bits in the input)?

• Word RAM model

 • Input contains $\Theta(n + m)$ words

 • Word RAM model says each word stores $\Theta(\log w)$ bits
 where $w = \#$ words in the input

 • So in this case, $\Theta(\log(n + m))$ bits per word

• So $S \in \Theta((n + m) \log(n + m))$

 • Want a term that looks like nm
SO... IS DP LCS A POLYTIME ALGORITHM?

- Try squaring: $S^2 \in \Theta((n + m) \log(n + m)^2)$
- $\Theta(n^2 \log^2(n + m) + nm \log^2(n + m) + m^2 \log^2(n + m))$
- Of course, $nm \in O(nm \log^2(n + m))$
 - ... which is just one of the terms of S^2
 - So $nm \in O(S^2)$
- **So the runtime is polynomial in the input size (in bits)**
 - But this was ugly. Is there a simpler approach?
SO... IS DP LCS A POLYTIME ALGORITHM?

• Calculation using words would be simpler...

• **Words** in the input $W \in O(n + m)$

• $W^2 \in O((n + m)^2) = O(n^2 + nm + m^2)$

 • So $O(nm) \subseteq O(W^2)$

 • I.e., polynomial in the # of **words** in the input

• How does this help us?

 • # **words** W in the input \leq # **bits** S in the input

 • So $O(nm) \subseteq O(W^2)$ implies $O(nm) \subseteq O(S^2)$

So, for showing **polytime**, you can calculate the input size using **words** (and justify like this)