CS 341: ALGORITHMS

Lecture 12: graph algorithms

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

GRAPHS

- A graph is a pair \(G = (V, E) \)
- \(V \) contains vertices
- \(E \) contains edges
 - An edge \(uv \) connects two distinct vertices \(u, v \)
 - Also denoted \((u, v) \)
 - Graphs can be **undirected**
 - ... or **directed**
 - meaning \((u, v) \neq (v, u) \)

A FEW MORE TERMS

- The **indegree** of a node \(u \), denoted \(\text{indeg}(u) \), is the number of edges **directed into** \(u \)
- The **outdegree**, denoted \(\text{outdeg}(u) \), is the number of edges **directed out from** \(u \)
- The **neighbours** of \(u \) are the nodes \(u \) points to
 - Also called the **nodes adjacent to** \(u \), denoted \(\text{adj}(u) \)

\[
\begin{align*}
\text{indeg}(u) &= 1 \\
\text{outdeg}(u) &= 2 \\
\text{adj}(u) &= \{1, 3\}
\end{align*}
\]

DATA STRUCTURES FOR GRAPHS

- Two main representations
 - **Adjacency matrix**
 - **Adjacency list**
- Each has pros & cons

PROPERTIES OF GRAPHS

- Number of vertices \(n = |V| \)
- Number of edges \(m = |E| \leq n(n-1) \)
 - Note \(m \) is in \(\Theta(n^2) \) but **not necessarily** \(\Omega(n^2) \)
 - For undirected graphs, \(m \leq \frac{n(n-1)}{2} \)
 - (Asymptotically, no different)

- Other common terminology:
 - **vertices = nodes**
 - **edges = arcs**

Directed vs Undirected Graphs

- Directed graph
- Undirected graph

2022-06-03
ADJACENCY MATRIX REPRESENTATION

- $n \times n$ matrix $A = (a_{uv})$
- Rows & columns indexed by V
- $a_{uv} = 1$ if (u, v) is an edge
- $a_{uv} = 0$ if (u, v) is a non-edge
- Diagonal = 0 (no self edges)

Matrix A

ADJACENCY MATRIX REPRESENTATION

- For undirected graphs
- $a_{uv} = 1$ if (u, v) or (v, u) is an edge
- Matrix is symmetric $A^T = A$

head

tail

IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
 - Assume nodes are labeled $0..n-1$
 - 2D array `bool adj[n][n]`
 - What if nodes are not labeled $0..n-1$?
 - Rename them in a preprocessing step
 - What if you don’t have 2D arrays?
 - Transform 2D array index into 1D index
 - `adj[u][v] \rightarrow adj[u*n + v]`
 - (can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

- For undirected graphs
- If `adj[u]` contains v then `adj[v]` also contains u

head

tail

ADJACENCY LIST REPRESENTATION

- Suppose we are loading a graph from input
 - Assume nodes are labeled $0..n-1$
 - Array of lists `adj[n]`
 - [In C++, something like an array of vector<int> would work]
PROS AND CONS

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to test whether ((u,v)) is an edge</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Time to list neighbours of (u)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Space complexity</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Adjacency matrix is useful when nodes have \(O(1)\) neighbours. Adjacency list is better for dense graphs.

We call this a sparse graph.

TIME TO TEST WHETHER \((u,v)\) IS AN EDGE

- \(O(1)\)
- \(O(\text{outdeg}(u))\)

TIME TO LIST NEIGHBOURS OF \(u\)

- \(O(n)\)
- \(O(\text{outdeg}(u))\)

SPACE COMPLEXITY

- \(O(n^2)\)
- \(O(n+m)\)

Better if \(\omega(n^2)\) edges.

We call this a sparse graph.

EXCELLENT WHEN NODES HAVE \(O(1)\) NEIGHBOURS

BREADTH FIRST SEARCH

A simple introduction to graph algorithms

COMPLEXITY

- \(O(n)\) (with adjacency list)
- **Naive loop analysis:**
 - \(O(n)\) iterations
 - \(O(|\text{adj}(u)|)\) iterations
 - \(|\text{adj}(u)| \leq n\), so \(O(n^2)\)

SMARTER LOOP ANALYSIS:

- For each \(u\), iterate over all neighbours
 - \(O(\text{outdeg}(u))\)
 - Total contribution of the inner loop to the runtime \(O(n)\)

EXAMPLE EXECUTION

Starting at node 1

- \(q:\) 1
- \(q\) head
- \(q\) tail
- \(q\) queue
- \(q\) dequeue
- \(q\) enqueue
- \(q\) grey
- \(q\) white
- \(q\) processed
- \(q\) finished
- \(q\) black

ASSUMING ADJACENCY LIST REPRESENTATION

- Undiscovered nodes are white
- Discovered nodes are grey
- Processing adjacent edges
- Finished nodes are black
- Adjacent nodes have been processed
- Connected graph: each node is eventually black

START PROCESSING NODE \(u\)’S EDGES

DISCOVER (ENQUEUE) NEIGHBOUR \(v\)

FINISH PROCESSING \(u\)

- \(O(\text{outdeg}(u))\)
- \(O(1)\)
- \(O(n)\) iterations
Smarter loop analysis:
- Initialization time: $O(n)$
- Total contribution of the inner loop: $O(m)$
 - (Over all iterations of the outer loop)
- Additional contribution of the outer loop: $O(n)$
- Total runtime: $O(m + n)$

Analytic expression for loop complexity:
$$T_{LOOP} \in O(\sum_{u=1}^{n} deg(u)) = O(n + m),$$
$$deg(u) = O(n) + \sum_{u=1}^{n} deg(u) = O(n^2)$$

But, it takes $O(n)$ time to determine which nodes are adjacent to u
- This $O(n)$ cost is paid for each u, resulting in a total runtime of $O(n^2)$

BFS TREE
- Connected graph: the `pred[]` array induces a tree
- The edges induced by `pred[]` are called tree edges
- Edges in the graph, but not in `pred[]` are cross edges

DISTANCE IN GRAPH G AND BFS TREE T
- Denote $d_G(v)$ as the (optimal) distance between s and v in G
- Denote $d_T(v)$ as the distance between s and v in the BFS tree T
- Recall: $dist[v]$ is a value set by BFS for each node v

PROOF IDEA
- Want to show: at the end of BFS, $dist[v] = d_G(v)$ for all v
 - Plan: prove this in two parts
 - Claim 1: $dist[v] = d_T(v)$
 - Claim 2: $d_T(v) = d_G(v)$
CLAIM 1

Key observation: Whenever we set $\text{dist}_v = \text{dist}_u + 1$, u is the parent of v in the BFS tree. Based on this observation, a simple inductive proof shows $\text{dist}_v = \text{dist}_T(v)$ (for example, by strong induction on the nodes in the order their dist values are set—left as an exercise).

CLAIM 2

- $\text{dist}_T(v) \leq \text{dist}_G(v)$
- $\text{dist}_T(v) \geq \text{dist}_G(v)$

Part 1: $\forall v, \text{dist}_v \leq \text{dist}_T(v)$
- There is a unique path $v \rightarrow \cdots \rightarrow s$ in T.
- And T is a subgraph of G.
- So that same path also exists in G (technically reversed).

Part 2: $\forall v, \text{dist}_v \geq \text{dist}_T(v)$
- We've just argued that there is no "forward" edge in G that "skips" a level in T from V_i to V_j, $j \geq i + 2$.
- Since no edge in G "skips" a level in T, we know at least one edge in G is needed to traverse each level between $s \in V_0$ and $p \in V_{\text{dist}_T(p)}$.
- There are d_{dist_G} such levels, so $\text{dist}_G \geq \text{dist}_T(v)$.

BFS Tree Properties

Fact: There are no “back” edges in undirected graphs that “skip” a level going up in the BFS tree.

APPLICATION: Finding Shortest Paths
User interfaces: rubber banding a mouse cursor around obstacles

Game AI: path finding in a grid graph

--

How to represent a grid graph?

--

How to output an actual path

- Suppose you want to output a path from s to v with minimum distance (not just the distance to v)
- Algorithm (what do you think?)
 - Similar to extracting an answer from a DP array!
 - Work backwards through the predecessors
 - Note: this will print the path in reverse! Solution?

Application: undirected connected components

Connected components

- Example: undirected graph with three components

Can you think of a way to use BFS to count how many connected components there are?
BreadthFirstSearch(V, adj, 1)
BreadthFirstSearch(V, adj, 2)
BreadthFirstSearch(V, adj, 3)
BreadthFirstSearch(V, adj, 4)

Can be done in \(O(n + m)\) time Complexity?

Modified BFS that (1) reuses the same color array for consecutive calls and (2) sets \(comp[u] = compNum\) for each node \(u\) it visits.

\[
\begin{aligned}
\text{UndirectedConnectedComponents}: &\text{adj} &\text{adj} \\
\text{color}[\cdot] &\leftarrow \text{white} &\text{white} \\
\text{comp}[\cdot] &\leftarrow \{0, \ldots, 0\} \\
\text{compNum} &\leftarrow 1 \\
\text{for} &\text{start} = 1 &\text{while} \\
\text{if} &\text{color[start] is white} &\text{BFS(adj, start, colour, comp, compNum)} \\
\text{return} &\text{comp} \\
\end{aligned}
\]

BONUS SLIDES

ANSWER TO BFS TREE PROPERTY EXERCISE...