CS 341: ALGORITHMS

Lecture 12: graph algorithms I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
GRAPHS
\textbf{GRAPHS}

- A graph is a pair $G = (V, E)$
- V contains \textbf{vertices}
- E contains \textbf{edges}
 - An edge uv connects two \textbf{distinct} vertices u, v
 - Also denoted (u, v)
- Graphs can be \textbf{undirected}
- ... or \textbf{directed}
 - Meaning $(u, v) \neq (v, u)$
PROPERTIES OF GRAPHS

- Number of vertices $n = |V|$
- Number of edges $m = |E| \leq n(n - 1)$
 - Note m is in $O(n^2)$ but not necessarily $\Omega(n^2)$
 - For undirected graphs, $m \leq \frac{n(n-1)}{2}$
 - (Asymptotically, no different)

- Other common terminology:
 - vertices = nodes edges = arcs

- Head of the edge (u, v)
- Tail of the edge (or source & target)

12 edges $n(n - 1) = 4 \cdot 3$
A FEW MORE TERMS

- The **indegree** of a node u, denoted $\text{indeg}(u)$, is the number of edges **directed into** u.
- The **outdegree**, denoted $\text{outdeg}(u)$, is the number of edges **directed out from** u.
- The **neighbours** of u are the nodes u points to.
 - Also called the **nodes adjacent to** u, denoted $\text{adj}(u)$.

- $\text{indeg}(u) = 1$
- $\text{outdeg}(u) = 2$
- $\text{adj}(u) = \{1, 5\}$
DATA STRUCTURES FOR GRAPHS

- Two main representations
 - Adjacency matrix
 - Adjacency list
- Each has pros & cons
ADJACENCY MATRIX REPRESENTATION

- $n \times n$ matrix $A = (a_{uv})$
 - rows & columns indexed by V
- $a_{uv} = 1$ if (u, v) is an edge
- $a_{uv} = 0$ if (u, v) is a non-edge
- Diagonal = 0 (no self edges)
ADJACENCY MATRIX REPRESENTATION

- For undirected graphs
- \(a_{uv} = 1 \) if \((u, v)\) or \((v, u)\) is an edge
- Matrix is symmetric \(A^T = A \)
IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - 2D array `bool adj[n][n]`
- What if nodes are not labeled 0..n-1?
 - Rename them in a preprocessing step
- What if you don’t have 2D arrays?
 - Transform 2D array index into 1D index
 - `adj[u][v] → adj[u*n + v]`
 (can simplify with macros in C)
ADJACENCY LIST REPRESENTATION

- n linked lists, one for each node
- We write $adj[u]$ to denote the list for node u
- $adj[u]$ contains the labels of nodes it has edges to
ADJACENCY LIST REPRESENTATION

- For undirected graphs
- If $adj[u]$ contains v then $adj[v]$ also contains u
IMPLEMENTING ADJACENCY LISTS

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - Array of lists adj[n]
 - (In C++, something like an array of vector<int> would work)
PROS AND CONS

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to test whether ((u, v)) is an edge</td>
<td>(O(1))</td>
<td>(O(\text{outdeg}(u)))</td>
</tr>
<tr>
<td>Time to list neighbours of (u)</td>
<td>(O(n))</td>
<td>(O(\text{outdeg}(u)))</td>
</tr>
<tr>
<td>Space complexity</td>
<td>(O(n^2))</td>
<td>(O(n + m))</td>
</tr>
</tbody>
</table>

- Better if \(o(n^2)\) edges
- Excellent when nodes have \(O(1)\) neighbours

We call this a **sparse** graph

Can be better for dense graphs
BREADTH FIRST SEARCH

A simple introduction to graph algorithms
BreadthFirstSearch($V[1..n]$, $adj[1..n]$, s)

pred[1..n] = [null, null, ..., null]
dist[1..n] = [infty, infty, ..., infty]
colour[1..n] = [white, white, ..., white]
q = new queue

colour[s] = gray
dist[s] = 0
q.enqueue(s)

while q is not empty
 u = q.dequeue()
 for v in $adj[u]$
 if colour[v] = white
 pred[v] = u
colour[v] = gray
dist[v] = dist[u] + 1
q.enqueue(v)
colour[u] = black

return colour, pred, dist

Assuming adjacency list representation

- Undiscovered nodes are white
- Discovered nodes are gray
 - Processing adjacent edges
- Finished nodes are black
 - Adjacent nodes have been processed
- Connected graph: each node is eventually black
BreadthFirstSearch(V[1..n], adj[1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue

 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

 return colour, pred, dist
BreadthFirstSearch(V[1..n], adj[1..n], s)

pred[1..n] = [null, null, ..., null]
dist[1..n] = [infty, infty, ..., infty]
colour[1..n] = [white, white, ..., white]
q = new queue

colour[s] = gray
dist[s] = 0
q.enqueue(s)

while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

return colour, pred, dist

COMPLEXITY

- $O(n)$ (with adjacency lists)
- Naïve loop analysis:
 - $O(n)$ iterations * $O(|adj[u]|)$ iterations
 - $|adj[u]| \leq n$, so $O(n^2)$
BreadthFirstSearch(V[1..n], adj[1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue

 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

 return colour, pred, dist

Smarter loop analysis:

- For each \(u \), iterate over all neighbours
- We touch each edge twice (doing \(O(1) \) work each time)
- **Total contribution** of the inner loop to the runtime: \(O(m) \)
BreadthFirstSearch(V[1..n], adj[1..n], s)

1. ```
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue
 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)
   ```

2. **Smarter loop analysis:**
   - Initialization time: \(O(n)\)
   - **Total contribution of the inner loop:** \(O(m)\)
     - (Over all iterations of the outer loop)
   - Additional contribution of the **outer loop:** \(O(n)\)
   - Total runtime: \(O(m + n)\)

3. **Analytic expression for loop complexity:**

   ```
 T_{LOOP}(n) \in O \left(\sum_{u=1}^{n} \left(1 + \text{deg}(u) \right) \right)
 = O \left(n + \sum_{u=1}^{n} \text{deg}(u) \right) = O(n + m)
   ```
DIFFERENCES WITH ADJACENCY MATRICES

- Analysis is mostly similar
- **But**, it takes $O(n)$ time to determine which nodes are adjacent to $u$!
- This $O(n)$ cost is paid for each $u$, resulting in a total runtime $\in O(n^2)$

```python
BreadthFirstSearch(V[1..n], A[1..n][1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue

 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v = 1..n
 if A[u][v] and colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

 return colour, pred, dist
```
BFS TREE

- Connected graph: the `pred[]` array induces a tree
- The edges induced by `pred[]` are called tree edges
- Edges in the graph, but not in `pred`, are cross edges

Disconnected? Forest...

Careful: we will also see DFS trees, and cross edges will be defined differently
BFS: PROOF OF OPTIMAL DISTANCES
DISTANCE IN GRAPH $G$ AND BFS TREE $T$

- Denote $d_G(v)$ as the (optimal) distance between $s$ and $v$ in $G$.
- Denote $d_T(v)$ as the distance between $s$ and $v$ in the BFS tree $T$.
- Recall: $\text{dist}[v]$ is a value set by BFS for each node $v$.

**Diagram:**

Graph $G$ with nodes $s, 2, 3, 4, 5, 7, 8$ and edges connecting them. The optimal distance $d_G(v) = 3$ from $s$ to $v$.

BFS tree $T$ starting from $s$ with nodes $2, 3, 4, 5, 7, 8$ and edges connecting them. The distance $d_T(v) = 3$ from $s$ to $v$.

Values:
- $\text{dist}[s] = 0$
- $\text{dist}[3] = 1$
- $\text{dist}[5] = 2$
- $\text{dist}[v] = 3$
PROOF IDEA

Want to show: at the end of BFS, \( \text{dist}[v] = d_G(v) \) for all \( v \)

Plan: prove this in two parts

Claim 1: \( \text{dist}[v] = d_T(v) \)

Claim 2: \( d_T(v) = d_G(v) \)
SKETCH OF CLAIM 1: $dist[v] = d_T(v), \forall v \in V$

```python
BreadthFirstSearch(V[1..n], adj[1..n], s)
 pred[1..n] = [null, null, ..., null]
 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] = [white, white, ..., white]
 q = new queue
 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)

 while q is not empty
 u = q.dequeue()
 for v in adj[u]
 if colour[v] = white
 pred[v] = u
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black

 return colour, pred, dist
```

Key observation: whenever we set $dist[v] \leftarrow dist[u] + 1$, $\forall v \in V$

Based on this observation, a simple inductive proof shows $dist[v] = d_T(v)$ (for example, by strong induction on the nodes in the order their $dist$ values are set---left as an exercise)
SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- **Part 1:** $\forall v, d_G(v) \leq d_T(v)$
  - There is a unique path $v \rightarrow \cdots \rightarrow s$ in $T$
  - And $T$ is a **subgraph** of $G$
  - So that same path also exists in $G$ (technically reversed)

To prove $=\,$ we show $\leq$ and $\geq$

---

$\begin{align*}
\text{So } d_G(v) \text{ is 3 or better}
\end{align*}$
Part 2: ∀\(v\), \(d_G(v) \geq d_T(v)\)

- **Partition** \(T\) into **levels**
  \(V_i = \{v : d_T(v) = i\}\) by distance from \(s\)
- **Claim:** there is no “forward” edge in \(G\) that “skips” a level from \(V_i\) to \(V_j, j \geq i + 2\)
- Suppose there is, for contradiction...

What are the consequences of “skipping” a level in \(T\)?

That “skip” edge in \(T\) looks like this in \(G\)

But that edge in \(G\) would cause 7 to have \(s\) as its parent, so \(dist[7]\) would be **only 1 greater** than its parent...

Contradicts(!) the assumption that the edge points to a node with **greater distance by at least 2**
Part 2: \( \forall v, d_G(v) \geq d_T(v) \)

- We’ve just argued that there is no “forward” edge in \( G \) that “skips” a level in \( T \) from \( V_i \) to \( V_j, j \geq i + 2 \)

- Since no edge in \( G \) “skips” a level in \( T \), we know at least one edge in \( G \) is needed to traverse each level between \( s \in V_0 \) and \( v \in V_{d_T(v)} \)

- There are \( d_T(v) \) such levels, so \( d_G(v) \geq d_T(v) \)
Fact: there are no “back” edges in undirected graphs that “skip” a level going up in the BFS tree.

Exercise: what about directed graphs?  
Answer in bonus slides…
APPLICATION:
FINDING SHORTEST PATHS
User interfaces: rubber-banding a **mouse cursor** around obstacles
Game AI: path finding in a grid-graph

Starting to get into the details

How to represent a grid graph?

BFS from here

SCORE: 0
HOW TO OUTPUT AN ACTUAL PATH

Suppose you want to output a path from \( s \) to \( v \) with minimum distance (not just the distance to \( v \))

Algorithm (what do you think?)

- Similar to extracting an answer from a DP array!
- Work backwards through the predecessors
- Note: this will print the path in reverse! Solution?
BFS from here

Shortest path to here?

Each time you visit a predecessor, push it into a stack

I.e., push \( \nu = 5 \), then push \( \text{pred}[\nu] = 4 \), then push \( \text{pred}[\text{pred}[\nu]] = 3 \), then 2, ...

At the end, pop all off the stack. This gives 0, 1, 2, ..., 5 = the path!

Destination \( \nu \)

Predecessor \( \text{pred}[\nu] \)

Predecessor \( \text{pred}[	ext{pred}[\nu]] \)
APPLICATION:
UNDIRECTED CONNECTED COMPONENTS
CONNECTED COMPONENTS

- Example: undirected graph with three components

Can you think of a way to use BFS to count how many connected components there are?
CONNECTED COMPONENTS

BreadthFirstSearch(V, adj, 1)
BreadthFirstSearch(V, adj, 3)
BreadthFirstSearch(V, adj, 4)

Can be done in $O(n + m)$ time

Complexity?

Modified BFS that (1) reuses the same colour array for consecutive calls and (2) sets $\text{comp}[u] = \text{compNum}$ for each node $u$ it visits

```python
def UndirectedConnectedComponents(adj[1..n]):
 colour[1..n] = [white, ..., white]
 comp[1..n] = [0, ..., 0]
 compNum = 1
 for start = 1..n
 if colour[start] is white
 BFS(adj, start, colour, comp, comp, compNum)
 return comp
```
BONUS SLIDES
ANSWER TO BFS TREE PROPERTY EXERCISE...