CS 341: ALGORITHMS

Lecture 12: graph algorithms III – DAG testing, topsort, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
DFS APPLICATION: TESTING WHETHER A GRAPH IS A **DAG**

A directed graph G is a **directed acyclic graph**, or **DAG**, if G contains no directed cycle.
Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Proof.

(⇒): Any back edge creates a directed cycle.

Back edge: points to an ancestor in the DFS forest
• Case (\leftarrow): Suppose \exists directed cycle. Show \exists back edge.

• Let $v_1, v_2, \ldots, v_k, v_1$ be a directed cycle

• WLOG let v_1 be earliest discovered node in the cycle

Consider edge \{v_k, v_1\}

Since $d[v_1] < d[v_k]$, \{v_k, v_1\} must be a back or cross edge. Why?

Recall: every node v_i that is white-reachable from v_1 when we discover v_1 (call DFSVisit(v_1)) turns black before v_1 ($f[v_i] < f[v_1]$).

So v_k must turn black before v_1, and we have $f[v_k] < f[v_1]$.

Thus, \{v_k, v_1\} must be a back edge. QED
TURNING THE **LEMMa** INTO AN **ALGORITHM**

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of v</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>white</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>forward</td>
<td>black</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>back</td>
<td>gray</td>
<td>$d[v] < d[u] < f[u] < f[v]$</td>
</tr>
<tr>
<td>cross</td>
<td>black</td>
<td>$d[v] < f[v] < d[u] < f[u]$</td>
</tr>
</tbody>
</table>

When we observe an edge from u to v, check if v is gray.

Back edge
DFS: TESTING WHETHER A GRAPH IS A DAG

```plaintext
DFSVisit(adj[1..n], v)

colour[v] = gray

time = time + 1
d[v] = time

for each w in adj[v]
    if colour[w] == white
        pred[w] = v
        DFSVisit(w)
    if color[w] == gray
        DAG = false

colour[v] = black

time = time + 1
f[v] = time
```

global variables:

pred[1..n] = [null, null, ..., null]

colour[1..n] = [white, white, ..., white]

d[1..n] = [0, 0, ..., 0] // discovery times

f[1..n] = [0, 0, ..., 0] // finish times

time = 0

DAG = true

IsDAG(adj[1..n])

for v = 1..n
 if colour[v] == white
 DFSVisit(adj, v)

return DAG
```
Back edge found! So we set DAG = false
TOPOLOGICAL SORT
Finding node orderings that satisfy given constraints
• Edge \{u, v\} means u must be completed before v

Example problem: getting dressed in the morning

Could do various things first. Which ones are possible? What do they have in common?

Watch any time

Pants before belt

Socks before shoes
Topological sort

Try to order nodes linearly so there are only pointers from left to right!

Possible IFF graph is a DAG
A directed graph $G = (V, E)$ has a topological ordering, or topological sort, if there is a linear ordering $<$ of all the vertices in $V$ such that $u < v$ whenever $uv \in E$. 

Graph $G$ 

Topological sort of $G$ 

$3 < 2 < 5 < 4 < 1 < 6$ 

Edges are directed only left-to-right in this ordering
Lemma 6.5

A DAG contains a vertex of indegree 0.

Proof.

Suppose we have a directed graph in which every vertex has positive indegree. Let \( v_1 \) be any vertex. For every \( i \geq 1 \), let \( v_{i+1}v_i \) be an arc. In the sequence \( v_1, v_2, v_3, \ldots \), consider the first repeated vertex, \( v_i = v_j \) where \( j > i \). Then \( v_j, v_{j-1}, \ldots, v_i, v_j \) is a directed cycle.

One of these must be repeated. So there is a cycle!
TOPOLOGICAL SORT VIA DFS

• We can implement topological sort by using **DFS**!
• The **finishing times** of nodes help us
• Understanding this algo will be **key** for understanding strongly connected components
Recall from DAG-testing: there are **no back edges** in a DAG.
To see why, suppose D is a DAG and we order nodes in this way,
so \( f_{v_1} > f_{v_2} > \cdots > f_{v_{n-1}} > f_{v_n} \)

For contradiction, suppose a right-to-left edge \( \{u, v\} \) exists.

By our node ordering, \( f_v > f_u \)

But the lemma says for every edge \( \{u, v\} \), we must have \( f_v < f_u \)

**Lemma 6.8**

Suppose D is a DAG. Then \( f[v] < f[u] \) for every arc \( uv \).

**Contradiction!** Right-to-left edge cannot exist. So is is a topological ordering.
TOPOLOGICAL ORDERING VIA DFS

$O(n + m)$ w/adj. lists

1. Global variables:
   - `pred[1..n] = [null, null, ..., null]`
   - `colour[1..n] = [white, white, ..., white]`
   - `d[1..n] = [0, 0, ..., 0] // discovery times`
   - `f[1..n] = [0, 0, ..., 0] // finish times`
   - `time = 0`
   - `DAG = true`

2. TopologicalSort(adj[1..n])
   - `S = new stack`
   - `for v = 1..n`
     - `if colour[v] == white`
       - `DFSVisit(adj, v, S)`
     - `if DAG then return S`
   - `return null`

3. DFSVisit(adj[1..n], v, S)
   - `colour[v] = gray`
   - `time = time + 1`
   - `d[v] = time`
   - `for each w in adj[v]`
     - `if colour[w] == white`
       - `pred[w] = v`
       - `DFSVisit(w)`
     - `if color[w] == gray`
       - `DAG = false`
   - `colour[v] = black`
   - `S.push(v)`
   - `time = time + 1`
   - `f[v] = time`

Push smallest finishing time first ➔ pop largest first
Save each node when it finishes
The initial calls are $DFSvisit(1)$, $DFSvisit(2)$ and $DFSvisit(3)$.

The discovery/finish times are as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The topological ordering is $3, 2, 5, 4, 1, 6$ (reverse order of finishing time).
I RENAMED "MY DOCUMENTS" ON YOUR COMPUTER

YOU HAVEN'T TEXTED ME IN 1 MINUTE AND 42 SECONDS

TO "OUR DOCUMENTS"

WHY ARE YOU IGNORING ME?

STRONGLY CONNECTED COMPONENTS
This graph could be divided into two graphs that are each strongly connected. These are called strongly connected components (SCCs).
STRONGLY CONNECTED COMPONENTS

• It could also be divided into **three graphs**...

• But we want our SCCs to be **maximal** (as large as possible)
• So, the goal is to find these (maximal) SCCs:
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

• Finding **all cyclic** dependencies in code
• Can find **single** cycle with an easier DFS-based algorithm
• But it is nicer to find **all** cycles at once, so you don’t have to fix one to expose another
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

• **Data filtering** before running other algorithms
• maps; nodes = intersections, edges = roads
• Don’t want to run path finding algorithm on the entire *global* graph!
• Throw away everything except the (maximal) SCC containing source & target
Consider this graph. These are its SCCs:

- a, b, c, d
- f, e, g
- h, i
- j, k

And an edge between two nodes IFF there is an edge between the corresponding SCCs.

The following is its component graph:

- It has one node for each SCC.

Can there be a cycle in the component graph?

No! If there are paths both ways between components, they are actually the same SCC.

Component graph is a DAG!
BRAINSTORMING AN ALGORITHM

• What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire graph is strongly connected?)

This will definitely visit every node in a’s SCC
And in fact it might visit other SCCs as well…

**DFSVisit(a)**  **DFSVisit(h)**  **DFSVisit(j)**

Showing discovery times

Showing finish times
• What if we run DFS, then reverse all edges, then run DFS?

**DFSVisit(a)**  **DFSVisit(h)**  **DFSVisit(j)**

Problem: from *h*, we can reach other SCCs. We fail to identify SCC \{ *h, i* \}.

What if we perform DFSVisit calls in a different order in the reverse graph?

Other reachable SCCs should be visited first.

Then, each DFSVisit will visit exactly one SCC. (So we don’t visit them again)
Consider component graph $C_G$ of $G$ (which we want to compute).

If we call DFSVisit in $G$ from largest to smallest finish times, we can reach other SCCs.

However, when we reverse the edges to get graph $H$ other SCCs can no longer be reached.

Recall lemma: edge $uv$ in DAG implies $f(u) > f(v)$.
This is called Sharir’s algorithm (sometimes Kosaraju’s algorithm). This paper first introduced it.

```
SCC(adj[1..n])
 DFS(adj)
 let order[1..n] = node labels sorted by largest to smallest finish time
 reverse all edges in adj
 colour[1..n] = [white, ..., white]
 comp[1..n] = [0, ..., 0]
 for i = 1..n
 v = order[i]
 if colour[v] == white
 scc = scc + 1
 SCCVisit(adj, v, scc, colour, comp)
 colour[v] = black
```
Running Sharir’s Algorithm

Phase 1: DFS to get finish times

Phase 2: DFSVisit reverse graph by reverse finish times

DFSVisit(j) DFSVisit(h) DFSVisit(a) DFSVisit(e)

\[ scc = 4 \]

\[ scc = 1 \]

\[ scc = 2 \]

\[ scc = 3 \]

\[ scc = 4 \]
**TIME COMPLEXITY?**

```
1 SCC(adj[1..n])
2 DFS(adj)
3 let order[1..n] = node labels sorted by
4 largest to smallest finish time
5 reverse all edges in adj
6 colour[1..n] = [white, ..., white]
7 comp[1..n] = [0, ..., 0]
8 for i = 1..n
9 v = order[i]
10 if colour[v] == white
11 scc = scc + 1
12 SCCVisit(adj, v, scc, colour, comp)
13 SCCVisit(adj[1..n], v, scc, colour, comp)
14 colour[v] = gray
15 comp[v] = scc
16 for each w in adj[v]
17 if colour[w] == white
18 SCCVisit(w)
19 colour[v] = black
20 return comp
```

- Can be returned as part of the DFS with no added runtime
- Finish times **increase** as we set them, so just use a stack...
- Total of $O(n + m)$ work over all $n$ iterations of the $i$ loop (each edge is inspected once, each node is visited once, constant work per visited node/inspected edge)
- Total $O(n + m)$
CORRECTNESS

• Want to prove that each top-level call to SCCVisit explores **exactly** the nodes in one SCC

• Proof hinges on a key lemma that talks about the **finish times of SCCs** in the **component graph**

• To talk about finish times of SCCs, we need a definition...
A KEY DEFINITION

- For a strongly connected component $C$, let $d[C] = \min\{d[v] : v \in C\}$ and $f[C] = \max\{f[v] : v \in C\}$.
**A KEY LEMMA**

- **Lemma:** if $C_i, C_j$ are SCCs and there is an edge $C_i \rightarrow C_j$ in $G$, then $f[C_i] > f[C_j]$

- **Proof.** Case 1 ($d[C_i] < d[C_j]$):
  - Let $u$ be the earliest discovered node in $C_i$
  - All nodes in $C_i \cup C_j$ are white-reachable from $u$, so they are *descendants in the DFS forest* and finish before $u$
  - So $f[C_i] = f[u] > f[C_j]$
**A KEY LEMMA**

- **Lemma:** if $C_i, C_j$ are SCCs and there is an edge $C_i \rightarrow C_j$ in $G$, then $f[C_i] > f[C_j]$.

- **Proof. Case 2 ($d[C_j] < d[C_i]$):**
  - Since component graph is a DAG, there is **no path** $C_j \rightarrow C_i$.
  - Thus, **no nodes** in $C_i$ are reachable from $C_j$.
  - So we discover $C_j$ and finish $C_j$ **without** discovering $C_i$.
  - Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED
Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph.

**We prove each top-level SCCVisit call visits precisely one SCC**

Consider the first top-level SCCVisit($u$)

Let $C$ be the SCC containing $u$ and $C'$ be any other SCC

Since we call SCCVisit on nodes starting from the largest finish time,

- We know $f(C) > f(C')$
... and sets comp[v] = scc for all nodes in the SCC

So each top-level call explores one SCC...

and larger finish time means already explored!

In $G$, edges go from larger to smaller finish times. In $H$, edges go from smaller to larger.

Similar argument for subsequent top-level calls to SCCVisit.

So SCCVisit($u$) visits exactly the nodes in $C$

• We know $f(C) > f(C')$
• By Lemma: if there were an edge $C' \rightarrow C$ in $G$, then we would have $f(C') > f(C)$
• So there is no edge $C' \rightarrow C$ in $G$
• and hence no edge $C \rightarrow C'$ in $H$
• So, SCCVisit($u$) in $H$ cannot visit $C'$

36
IF WE HAVE TIME

topological sort without relying on DFS
Theorem 6.6

A directed graph $D$ has a topological sort if and only if it is a DAG.

Proof.

$(\Rightarrow)$: Suppose $D$ has a directed cycle $v_1, v_2, \ldots, v_j, v_1$. Then $v_1 < v_2 < \cdots < v_j < v_1$, so a topological ordering does not exist.

$(\Leftarrow)$: Suppose $D$ is a DAG. Then the algorithm below constructs a topological ordering.
Kahn(adj[1..n])

1. indeg[1..n] = [0, ..., 0]
2. for each edge (u,v) in adj
   indeg[v] = indeg[v] + 1
3. order = new list
4. q = new queue containing {v : indeg[v] == 0}
5. for i = 1..n
   if q.empty() return null
   v = q.dequeue()
   order.append(v)
   for each w in adj[v]
      indeg[w] = indeg[w] - 1
      if indeg[w] == 0 then q.enqueue(w)
6. return order

indeg[v] = # of edges pointing into node v

= number of unsatisfied constraints on v

Nodes with indeg 0 have no unsatisfied dependencies

So this step is enqueuing nodes whose dependencies are already satisfied

q always contains nodes with no unsatisfied dependencies (indeg 0)

Add v to the topological order

No such order!

Remove v’s out edges. If we have now satisfied all dependencies for some w, add w to the queue also.
Compute **indegree** for all vertices

For each node u
  For each w in adj(u)
    w.deg = w.deg + 1

vertices with indeg 0 go into the queue

Until Q is empty: pop, output that element, decrement its neighbours, enqueue new indeg 0’s
Kahn(adj[1..n])

indeg[1..n] = [0, ..., 0]

for each edge (u,v) in adj
    indeg[v] = indeg[v] + 1

order = new list
q = new queue containing {v : indeg[v] == 0}

for i = 1..n
    if q.empty() return null
    v = q.dequeue()
    order.append(v)

    for each w in adj[v]
        indeg[w] = indeg[w] - 1
        if indeg[w] == 0 then q.enqueue(w)

return order
BONUS SLIDES
SCC: HOW ABOUT A DIFFERENT ORDERING?

• Rather than doing DFS in the reverse graph in order of decreasing finish times
• Why not do DFS in the original graph in order of increasing finish times?
• Exercise: does this work?
SCC: HOW ABOUT A DIFFERENT ORDERING?

- Why not do DFS in the **original** graph in order of **increasing** finish times?

Doesn’t work!

Output depends where first DFS starts...

If first DFS starts at c, then...

DFSVisit(b) would reach two SCCs.