CS 341: ALGORITHMS

Lecture 13: graph algorithms II – finishing BFS, depth first search
Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
BFS APPLICATION:
TESTING WHETHER A GRAPH IS BIPARTITE
A graph is **bipartite** if the nodes can be **partitioned** into sets R and B such that each edge has one endpoint in R and one endpoint in B.
CRUCIAL PROPERTY: NO ODD CYCLES

• **Claim:** a graph is bipartite if and only if it does **not** contain an **odd length cycle**

What happens if I create an odd length cycle?

Edge with both endpoints in B!
PART 1: ODD CYCLE ⇒ NOT BIPARTITE

• Suppose there is an odd length cycle $v_1, v_2, \ldots, v_{2k+1}, v_1$

WLOG let $v_1 \in R$

Then we must have $v_2 \in B$

(Or there will be an edge (v_1, v_2) with two endpoints in R)

And $v_3 \in R$

And $v_4 \in B$

And so on, alternating…

Until $v_{2k} \in B$

And finally $v_{2k+1} \in R$!!

Both endpoints in R! Contradiction!
PROOF

PART 2: ALL CYCLES HAVE EVEN LENGTH ⇒ BIPARTITE

• Let v_i be any node, and $d(v)$ be the distance from v_i to v

• Partition nodes by even vs odd distances

$d(v_i) = 0$

$d = 1$

G

WTP: no edge between red nodes
no edge between blue nodes

$R = \text{odd } d(v)$
$B = \text{even } d(v)$
BAD EDGES MEAN ODD CYCLES

- **Claim**: if there were an edge between red nodes, or between blue nodes, there would be an **odd length cycle**
- WLOG suppose for contradiction \((u, v) \in E\) where \(u, v \in R\)
- Since \(u, v \in R\), distances \(d(u)\) and \(d(v)\) from \(v_i\) are **both odd**

 Recall \(d(u) = \text{length of shortest path } v_i \rightarrow \cdots \rightarrow u\)

 \[d(u) = \text{odd}\]

 \[d(v) = \text{odd}\]

 ...and \(d(v)\) the shortest path \(v_i \rightarrow \cdots \rightarrow v\)

 The combined path \(v_i \rightarrow \cdots \rightarrow u \rightarrow v \rightarrow \cdots \rightarrow v_i\)

 forms a cycle

 And its length is \(d(u) + 1 + d(v)\) which is **odd**!

 So there is no edge \((u, v)\) where \(u, v \in R\) (case B is similar)
Call BFS on each component to calculate distances for each node.

Modified BFS that reuses the same colour array and same `dist` array.

If both even or both odd, return a non-bipartite.

Return an actual bipartition.

Runtime complexity? Can be done in $O(n + m)$.

```
Bipartition(adj[1..n])

colour[1..n] = [white, ..., white]
dist[1..n] = [infty, ..., infty]
for start = 1..n
    if colour[start] is white
        BFS(adj, start, colour, dist)

for edge in adj
    let u and v be endpoints of edge
    if (dist[u]%2) == (dist[v]%2) then
        return NotBipartite

B = nodes u with even dist[u]
R = nodes u with odd dist[u]
return B, R
```
DEPTH FIRST SEARCH
DEEPTH-FIRST SEARCH OF A **DIRECTED** GRAPH

A depth-first search uses a stack (or recursion) instead of a queue.
We define predecessors and colour vertices as in BFS.
It is also useful to specify a **discovery time** $d[v]$ and a **finishing time** $f[v]$ for every vertex v.
We increment a **time counter** every time a value $d[v]$ or $f[v]$ is assigned.
We eventually visit all the vertices, and the algorithm constructs a depth-first forest.
Example execution starting at node 1

d[1]=1
time = 0
not white
d[2]=2

not white
d[3]=3
time = 1
f[3]=4
not white
d[4]=5
time = 2
f[4]=6
d[5]=7
f[5]=8

not white
d[6]=11
f[6]=12

DFSVisit(1)

DFSVisit(6)
DFS TREE / FOREST

- As in breadth first search, `pred[]` array induces a forest
- Let’s match the graph’s edge directions (opposite from `pred`)

```java
DepthFirstSearch(adj[1..n])
for v = 1..n
    if colour[v] == white
        DFSVisit(v)
```

Each top level DFSVisit call is the root of a tree

Recall: DFSVisit(1), DFSVisit(6)

Could draw BFS forest this way also…
BASIC DFS PROPERTIES TO REMEMBER

• Nodes start **white**

• A node \(v \) turns **gray** when it is **discovered**, which is when the first call to \(DFSVisit(v) \) happens

• **After** \(v \) is turned **gray**, we recurse on its neighbours

• After recursing on **all** neighbours, we turn \(v \) **black**
 • Recursive calls on neighbours end before \(DFSVisit(v) \) does, so the neighbours of \(v \) turn black before \(v \)

Also gets a **discovery time** \(d[v] \) at this point

Also gets a **finish time** \(f[v] \) at this point
Home exercise: complexity with adjacency matrix?

Only called on a white node, and immediately colours the node gray

So called once per node!

Each call iterates over the neighbours. Effectively: “for each node, for each neighbour, do O(1) work + recurse.”

Total \(O(n+m)\) iterations over all recursive calls. Total \(O(n+m)\) runtime!
CLASSIFYING EDGE IN DFS

- If $\text{pred}[v] = u$, then: (u, v) is a **tree edge**
- Else if v is a descendant of u in the DFS forest: **forward edge**
- Else if v is an ancestor of u in the DFS forest: **back edge**
- Else: (u, v) is a **cross edge**

Can we classify edges **without** inspecting the DFS forest?
Perhaps using $d[...], f[...], \text{colour}[..]$?
DEFINITIONS

- **Definition:** we use I_u to denote $(d[u], f[u])$, which we call the **interval of** u

- **Definition:** v is **white-reachable** from u if there is a path from u to v containing **only white nodes** (excluding u)
EXPLORING D[], F[] AND COLOUR[]

- **Observe:** every node \(v \) that is **white-reachable** from \(u \) when we first call \(DFSVisit(u) \) becomes **gray** after \(u \) and **black** before \(u \) (so \(I_v \) is **nested inside** \(I_u \))

Start \(DFSVisit(u) \), colour \(u \) grey, and set \(u \)’s discovery time

Perform \(DFSVisit \) calls recursively…

Colour \(u \) black, set \(u \)’s finish time and return from \(DFSVisit(u) \)

Consider the **tree of recursive calls** rooted at \(DFSVisit(u) \).

- \(v \) is discovered by a call in this tree
 - **iff** \(I_v \) is nested inside \(I_u \)

- **iff** \(v \) is a descendent of \(u \) in the DFS forest

- **iff** \(v \) turns grey after \(u \) and black before \(u \)

- **iff** \(v \) is white-reachable from \(u \) when \(DFSVisit(u) \) is called
SUMMARIZING IN A THEOREM

• **Theorem:** Let \(u, v \) be any nodes. The following statements are all equivalent:
 • \(v \) is **white-reachable** from \(u \) when we call \(DFSVisit(u) \)
 • \(v \) turns grey after \(u \) and black before \(u \)
 • (discovery/finish time interval \(I_v \) is **nested inside** \(I_u \))
 • \(v \) is discovered during \(DFSVisit(u) \)
 • \(v \) is a **descendant of** \(u \) in the DFS forest)
DFS inspects **every edge** in the graph. When DFS inspects an edge \(\{u, v\} \), the colour of \(v \) and relationship between the intervals of \(u \) and \(v \) determine the **edge type**.

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of (v)</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>Q1?</td>
<td>Q2?</td>
</tr>
<tr>
<td>forward</td>
<td>Q4?</td>
<td>Q3?</td>
</tr>
<tr>
<td>back</td>
<td>Q6?</td>
<td>Q5?</td>
</tr>
<tr>
<td>cross</td>
<td>Q8?</td>
<td>Q7?</td>
</tr>
</tbody>
</table>

Recall:
- \(v \) discovered during \(DFSVisit(u) \)
- \(v \) is **white-reachable** from \(u \) when we call \(DFSVisit(u) \)
- \(v \) is a **descendant** of \(u \) in the DFS forest
- \(v \) turns grey after \(u \) and black before \(u \)
- \(I_v \) nested inside \(I_u \)

But **not directly** from \(u \) (or \(\{u, v\} \) would be a tree edge)

So when \(DFSVisit(u) \) inspects \(\{u, v\} \), \(v \) **cannot** be white.

\(v \) is already discovered!

\(v \) is a **child** of \(u \) in the DFS tree

\(v \) is a **descendant** of \(u \)

\(v \) is an **ancestor** of \(u \)

\(v \) is **not** a descendant, **and not** an ancestor

... by another recursive call that \(DFSVisit(u) \) makes when it inspects a **previous edge**

That call **terminates** before \(DFSVisit(u) \) inspects \(\{u, v\} \)

And it colors \(v \) **black**!
USEFUL FACT: PARENTHESIS THEOREM

- **Theorem:** for each pair of nodes u, v the intervals of u and v are either disjoint or nested.

- **Proof:** Suppose the intervals are not disjoint.
 - Then either $d[v] \in I_u$ or $d[u] \in I_v$
 - WLOG suppose $d[v] \in I_u$
 - Then v is discovered during $DFSVisit(u)$
 - So, v must turn gray after u and black before u
 - So $f[v] < f[u]$
 - So the intervals are nested. QED
DFS inspects **every edge** in the graph.

When DFS inspects an edge \(\{u, v\} \), the colour of \(v \) and relationship between the intervals of \(u \) and \(v \) determine the **edge type**.

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of (v)</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>white</td>
<td>(d[u] < d[v] < f[v] < f[u])</td>
</tr>
<tr>
<td>forward</td>
<td>black</td>
<td>(d[u] < d[v] < f[v] < f[u])</td>
</tr>
<tr>
<td>back</td>
<td>gray</td>
<td>(d[v] < d[u] < f[u] < f[v])</td>
</tr>
<tr>
<td>cross</td>
<td>Q8?</td>
<td>Q7?</td>
</tr>
</tbody>
</table>

Recall: \(v \) is discovered during \(DFSVisit(u) \)

\[\Leftrightarrow (v \text{ is white-reachable from } u \text{ when we call } DFSVisit(u))\]

\[\Leftrightarrow (v \text{ is a descendant of } u \text{ in the DFS forest})\]

\[\Leftrightarrow (v \text{ turns grey after } u \text{ and black before } u)\]

\[\Leftrightarrow (I_v \text{ nested inside } I_u)\]

So, \(I_v \) must be earlier.

If \(I_u \) were earlier, then \(v \) would be discovered before \(u \) finishes (because of edge \(\{u, v\} \)), so intervals would not be disjoint!

Intervals \(I_u \) and \(I_v \) must be disjoint. But which is earlier?

\(v \) is **not** a descendents, and **not** an ancestor.
APPLICATION OF DFS:
STRONG CONNECTEDNESS
Testing existence of all-to-all paths
STRONG CONNECTEDNESS

• In a directed graph,
 • \(v \) is reachable from \(w \) if there is a path from \(w \) to \(v \)
 • we denote such a path \(w \rightarrow v \)
 • A graph \(G \) is strongly connected iff every node is reachable from every other node
 • More formally: \(\forall w, v \in V \) \(\exists w \rightarrow v \)

Compare: we use \(w \rightarrow v \) to denote an edge from \(w \) to \(v \)
STRONG CONNECTEDNESS

• Is this graph **strongly connected**?

 ![Graph 1](image1)

 No path from c to other nodes.

• How about this one?

 ![Graph 2](image2)

 Yes. One big cycle.
STRONG CONNECTEDNESS

• How about this graph?
 Yes. Multiple intersecting cycles.

• How about this one?
 No. Two cycles with only a one-directional path between them.
OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

• You gain some \textit{symmetry} from knowing a graph is strongly connected

• For example, you can \textit{start a graph traversal at any node}, and know the traversal will reach \textit{every} node

• Without strong connectedness, if you want to run a graph traversal that reaches every node in a single pass, you would have to do additional processing to determine an appropriate starting node
OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

• Useful as a sanity check!

• Suppose you want to run an algorithm that requires strong connectedness, and you believe your input graph is strongly connected

• **Validate** your input by **testing** whether this is true!

• Subtle, difficult-to-detect bugs often result if such an algorithm is run only on one component of a graph

• [More concrete applications once we generalize and talk about strongly connected components…]
A USEFUL LEMMA

- Lemma: a graph is strongly connected
- iff for any node s,
- all nodes are reachable from s, and s is reachable from all nodes

Prove both directions:
(⇒) Suppose for all u, v we have $u \rightarrow v$. Fix any s. Node s is reachable from all nodes, and vice versa.

(⇐) Suppose s is reachable from all nodes and vice versa. For any u, v, we have $u \leftarrow s \rightarrow v$, and $v \leftarrow s \rightarrow u$.
CREATING AN ALGORITHM

• How to use DFS to determine whether every node is reachable from a given node s?

• How to use DFS to determine whether s is reachable from every node?

DFS from s and see if every node turns black

What if we first reverse the direction of every edge?

Then $s \rightarrow v$ in this new graph IFF $v \rightarrow s$ in the original graph

DFS from s
THE ALGORITHM

- $\text{IsStronglyConnected}(G = \{V, E\})$ where $V = v_1, v_2, ..., v_n$
 - $(\text{colour}, d, f) := \text{DFSVisit}(v_1, G)$
 - for $i := 1..n$
 - if $\text{colour}[v_i] \neq \text{black}$ then return $false$
 - Construct graph H by reversing all edges in G
 - $(\text{colour}, d, f) := \text{DFSVisit}(v_1, H)$
 - for $i := 1..n$
 - if $\text{colour}[v_i] \neq \text{black}$ then return $false$
 - return $true$
Every node is black. Next step!

\(\text{DFSVisit}(a) \text{ in } G \)
(a is arbitrary)
Every node is black. Next step!

DFSVisit(a) in G (a is arbitrary)

Every node is black. Next step!

DFSVisit(a) in H

Every node is black. So G is strongly connected!
EXAMPLE EXECUTION 2

Could the result change if we started at a different node?

Construct graph H

$DFSVisit(a)$ in G (a is arbitrary)

Every node is black. Next step!

$DFSVisit(a)$ in H

Some nodes are not black

No path from those nodes to a

So G is not strongly connected!
REVERSING EDGES: ADJACENCY MATRIX

Reverse all edges
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

<table>
<thead>
<tr>
<th>source</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>target</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
REVERSING EDGES: ADJACENCY MATRIX

Reverse all edges

source

target
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges
REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

source

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

target

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

42
REVERSING EDGES: ADJACENCY MATRIX

Can do matrix transpose, or can just swap variables for source & target in your code!

reverse all edges

Complexity?
REVERSING EDGES: ADJACENCY LISTS

reverse edges

source
a → d
c → b
c → a
d → b
e → f
f → g
g → e

target
a → d
c → b
c → a
d → b
e → f
f → g
g → e

Complexity?

transposeLists(adj[1..n])
newAdj = new array of n lists
for u = 1..n
 for v in adj[u]
 newAdj[v].insert(u)
return newAdj
RUNTIME COMPLEXITY
FOR ADJACENCY LIST REPRESENTATION?

- $\text{IsStronglyConnected}(G = \{V, E\})$ where $V = v_1, v_2, ..., v_n$
 - $(\text{colour}, d, f) := \text{DFSVisit}(v_1, G)$
 - for $i := 1..n$
 - if $\text{colour}[v_i] \neq \text{black}$ then return false
 - Construct graph H by reversing all edges in G
 - $(\text{colour}, d, f) := \text{DFSVisit}(v_1, H)$
 - for $i := 1..n$
 - if $\text{colour}[v_i] \neq \text{black}$ then return false
 - return true