CS 341: ALGORITHMS

Lecture 14: graph algorithms III – topsort, DAG testing, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
DFS APPLICATION: TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a **directed acyclic graph**, or **DAG**, if G contains no directed cycle.
Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Proof.

(\Rightarrow): Any back edge creates a directed cycle.
Case (\rightarrow): Suppose \exists directed cycle. Show \exists back edge.

- Let $v_1, v_2, \ldots, v_k, v_1$ be a directed cycle
- WLOG let v_1 be earliest discovered node in the cycle

- Discovered before v_2, \ldots, v_k

Consider edge $\{v_k, v_1\}$

Since $d[v_1] < d[v_k]$, $\{v_k, v_1\}$ must be a back or cross edge.

Why?

So when v_1 is discovered, v_2, \ldots, v_k are all white

Recall: nodes become gray when discovered

Recall: every node v_i that is white-reachable from v_1 when we discover v_1 (call $\text{DFSVisit}(v_1)$) turns black before v_1 ($f[v_i] < f[v_1]$)

So v_k must turn black before v_1, and we have $f[v_k] < f[v_1]$.

Thus, $\{v_k, v_1\}$ must be a back edge. QED
When we observe an edge from \(u \) to \(v \), check if \(v \) is gray.

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of (v)</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>white</td>
<td>(d[u] < d[v] < f[v] < f[u])</td>
</tr>
<tr>
<td>forward</td>
<td>black</td>
<td>(d[u] < d[v] < f[v] < f[u])</td>
</tr>
<tr>
<td>back</td>
<td>gray</td>
<td>(d[v] < d[u] < f[u] < f[v])</td>
</tr>
<tr>
<td>cross</td>
<td>black</td>
<td>(d[v] < f[v] < d[u] < f[u])</td>
</tr>
</tbody>
</table>

Back edge
DFS: TESTING WHETHER A GRAPH IS A DAG

global variables:
 pred[1..n] = [null, null, ..., null]
 colour[1..n] = [white, white, ..., white]
 d[1..n] = [0, 0, ..., 0] // discovery times
 f[1..n] = [0, 0, ..., 0] // finish times
 time = 0
 DAG = true

IsDAG(adj[1..n])
 for v = 1..n
 if colour[v] == white
 DFSVisit(adj, v)
 return DAG

DFSVisit(adj[1..n], v)
 colour[v] = gray
 time = time + 1
 d[v] = time
 for each w in adj[v]
 if colour[w] == white
 pred[w] = v
 DFSVisit(w)
 if color[w] == gray
 DAG = false
 colour[v] = black
 time = time + 1
 f[v] = time
Back edge found! So we set DAG = false
TOPOLOGICAL SORT
Finding node orderings that satisfy given constraints
Example problem: getting dressed in the morning

Could do various things first. Which ones are possible? What do they have in common?

Pants before belt

Socks before shoes

Watch any time

DEPENDENCY GRAPH

• Edge \{u, v\} means u must be completed before v
Topological sort

Try to order nodes linearly so there are only pointers from left to right!

IFF there is a (directed) cycle!

Might not be possible! How can this happen?

Try to order nodes linearly so there are only pointers from left to right!
Goal: output a serial order of tasks that can be run without worrying about dependencies (because all dependencies are already satisfied by the time a task is run).

(Nodes are numbered according to one such order.)

Can even schedule tasks to run in parallel! Can do 1||2 then 3||13 then 4||5||15 etc.
A directed graph $G = (V, E)$ has a **topological ordering**, or **topological sort**, if there is a linear ordering $<$ of all the vertices in V such that $u < v$ whenever $uv \in E$.

Graph G

Topological sort of G

$3 < 2 < 5 < 4 < 1 < 6$

Edges are directed only **left-to-right** in this ordering.
Lemma 6.5

A DAG contains a vertex of indegree 0.

Proof.

Suppose we have a directed graph in which every vertex has positive indegree. Let v_1 be any vertex. For every $i \geq 1$, let $v_{i+1}v_i$ be an arc. In the sequence v_1, v_2, v_3, \ldots, consider the first repeated vertex, $v_i = v_j$ where $j > i$. Then $v_j, v_{j-1}, \ldots, v_i, v_j$ is a directed cycle.
Existence of a Topological Sort Order

Theorem 6.6

A directed graph D has a topological sort if and only if it is a DAG.

Proof.

(\Rightarrow): Suppose D has a directed cycle $v_1, v_2, \ldots, v_j, v_1$. Then $v_1 < v_2 < \cdots < v_j < v_1$, so a topological ordering does not exist.

(\Leftarrow): Suppose D is a DAG. Then the algorithm below constructs a topological ordering.
Kahn(adj[1..n])

```python
indeg[1..n] = [0, ..., 0]
for each edge (u, v) in adj
    indeg[v] = indeg[v] + 1

order = new list
q = new queue containing \{v : indeg[v] == 0\}
for i = 1..n
    if q.empty() return null
    v = q.dequeue()
    order.append(v)
    for each w in adj[v]
        indeg[w] = indeg[w] - 1
        if indeg[w] == 0 then q.enqueue(w)

return order
```

`indeg[v] = # of edges pointing into node v`

= number of unsatisfied constraints on v

Nodes with `indeg 0` have no unsatisfied dependencies

So this step is enqueuing nodes whose dependencies are already satisfied

`q always` contains nodes with no unsatisfied dependencies (indeg 0)

No such order!

Add v to the topological order

Remove v's out edges. If we have now satisfied all dependencies for some w, add w to the queue also.
EXAMPLE (KAHN’S ALGORITHM)

Compute **indegree** for all vertices

For each node u
 For each w in $\text{adj}(u)$
 $w.\text{deg} = w.\text{deg} + 1$

Vertices with indeg 0 go into the queue

Until Q is empty: pop, output that element, decrement its neighbours, enqueue new indeg 0’s

Queue Q

Output
Kahn(adj[1..n])

indeg[1..n] = [0, ..., 0]
for each edge (u, v) in adj
 indeg[v] = indeg[v] + 1

order = new list
q = new queue containing {v : indeg[v] == 0}
for i = 1..n
 if q.empty() return null
 v = q.dequeue()
 order.append(v)
 for each w in adj[v]
 indeg[w] = indeg[w] - 1
 if indeg[w] == 0 then q.enqueue(w)

return order

Running time with adjacency lists?

$O(n)$ iterations
$O(1)$ per check

$\sum_{v \in V} \deg(v) \in O(n + m)$

Total work over all nodes v

$O(n)$

$O(n + m)$ total work over all iterations

$O(n)$ per iteration i

$O(n + m)$ over all iterations
TOPOLOGICAL SORT VIA DFS

• We can also implement topological sort by using **DFS**!
• The **finishing times** of nodes help us
• Understanding this algo will be **key** for understanding strongly connected components
Lemma 6.8

Suppose D is a DAG. Then $f[v] < f[u]$ for every arc uv.

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of v</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>white</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>forward</td>
<td>black</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>back</td>
<td>gray</td>
<td>$d[v] < d[u] < f[v] < f[u]$</td>
</tr>
<tr>
<td>cross</td>
<td>black</td>
<td>$d[v] < f[v] < d[u] < f[u]$</td>
</tr>
</tbody>
</table>

Recall from DAG-testing: there are no back edges in a DAG.

Theorem: If D is a DAG, and we order vertices in reverse order of finishing time, (i.e., by largest to smallest finish time) then we get a topological ordering!

To see why, suppose D is a DAG and we order nodes in this way, so $f_{v_1} > f_{v_2} > \cdots > f_{v_{n-1}} > f_{v_n}$.

For contradiction, suppose a right-to-left edge $\{u, v\}$ exists. Since edge $\{u, v\}$ exists, the lemma implies $f_v < f_u$. But this contradicts the node ordering! So all edges are left-to-right, hence this is a topological sort.
TOPOLOGICAL ORDERING VIA DFS $O(n + m)$ w/adj. lists

```
1  global variables:
2     pred[1..n] = [null, null, ..., null]
3     colour[1..n] = [white, white, ..., white]
4     d[1..n] = [0, 0, ..., 0] // discovery times
5     f[1..n] = [0, 0, ..., 0] // finish times
6     time = 0
7     DAG = true
8
9  TopologicalSort(adj[1..n])
10     S = new stack
11     for v = 1..n
12         if colour[v] == white
13             DFSVisit(adj, v, S)
14     if DAG then return S
15     return null
16
17  DFSVisit(adj[1..n], v, S)
18     colour[v] = gray
19     time = time + 1
20     d[v] = time
21     for each w in adj[v]
22         if colour[w] == white
23             pred[w] = v
24             DFSVisit(w)
25         if color[w] == gray
26             DAG = false
27     colour[v] = black
28     S.push(v)
29     time = time + 1
30     f[v] = time
```

Save each node when it finishes

Push smallest finishing time first → pop largest first
HOME EXERCISE: RUN ON THIS GRAPH

The initial calls are $\text{DFSvisit}(1)$, $\text{DFSvisit}(2)$ and $\text{DFSvisit}(3)$.

The discovery/finish times are as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The topological ordering is $3, 2, 5, 4, 1, 6$ (reverse order of finishing time).
I RENAMED "MY DOCUMENTS" ON YOUR COMPUTER TO "OUR DOCUMENTS"

YOU HAVEN'T TEXTED ME IN 1 MINUTE AND 42 SECONDS

WHY ARE YOU IGNORING ME?

STRONGLY CONNECTED COMPONENTS
These are called **strongly connected components (SCCs)**

- This graph could be divided into **two graphs** that are each strongly connected.
STRONGLY CONNECTED COMPONENTS

• It could also be divided into three graphs...

• But we want our SCCs to be maximal (as large as possible)
So, the goal is to find **these** (maximal) SCCs:
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Finding **all cyclic** dependencies in code
- Can find **single** cycle with an easier DFS-based algorithm
- But it is nicer to find **all** cycles at once, so you don’t have to fix one to expose another
APPLICATIONS OF **SCCs** AND **COMPONENT GRAPHS**

- **Data filtering** before running other algorithms
- Consider Google maps; nodes = intersections, edges = roads
- Don’t want to run path finding algorithm on the entire **global** graph!
- First restrict execution to a rectangle
- Then throw away everything except the (maximal) SCC containing source & target
FORMALLY DEFINING SCC

For two vertices x and y of G, define $x \sim y$ if $x = y$; or if $x \neq y$ and there exist directed paths from x to y and from y to x.

The relation \sim is an **equivalence relation**.

The **strongly connected components** of G are the equivalence classes of vertices defined by the relation \sim.

A strongly connected component of a digraph G is a maximal strongly connected subgraph of G.

Note: a connected component can contain just a **single node**

Example: a node with no out-edges
Consider this graph

These are its SCCs

The following is its component graph

It has one node for each SCC

And an edge between two nodes IFF there is an edge between the corresponding SCCs

Can there be a cycle in the component graph?

No! If there are paths both ways between components, they are actually the same SCC

Component graph is a DAG!
BRAINSTORMING AN ALGORITHM

- What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire graph is strongly connected?)

This will definitely visit every node in a’s SCC
And in fact it might visit other SCCs as well…

$DFSVisit(a)$ $DFSVisit(h)$ $DFSVisit(j)$
What if we run DFS, then reverse all edges, then run DFS?

- **DFSVisit(a)**
- **DFSVisit(h)**
- **DFSVisit(j)**

Problem: from h, we can reach other SCCs.

We fail to identify SCC \{ h, i \}.

What if we perform DFSVisit calls in a different order in the reverse graph?

Other reachable SCCs should be visited first.

Then, each DFSVisit will visit **exactly one SCC**.

(So we don’t visit them again)
Consider component graph C_G of G (which we want to compute).

If we call DFSVisit in G from largest to smallest finish times, we can reach other SCCs.

However, when we reverse the edges to get graph H...

Calling DFSVisit on nodes ordered from largest to smallest finish times, we cannot reach other (unvisited) SCCs!
This is called Sharir’s algorithm (sometimes Kosaraju’s algorithm).

This paper first introduced it.

```
SCC(adj[1..n])
  DFS(adj)
  let order[1..n] = node labels sorted by largest to smallest finish time
  reverse all edges in adj
  colour[1..n] = [white, ..., white]
  comp[1..n] = [0, ..., 0]
  for i = 1..n
    v = order[i]
    if colour[v] == white
      scc = scc + 1
      SCCVisit(adj, v, scc, colour, comp)
    SCCVisit(adj[1..n], v, scc, colour, comp)
    colour[v] = gray
    comp[v] = scc
    for each w in adj[v]
      if colour[w] == white
        SCCVisit(w)
    colour[v] = black
```

return comp
Running Sharir’s Algorithm

Phase 1: DFS to get finish times

Phase 2: DFSVisit reverse graph by reverse finish times

\[\text{DFSVisit}(j)\]
\[\text{DFSVisit}(h)\]
\[\text{DFSVisit}(e)\]
\[\text{DFSVisit}(a)\]

\(scc = 4\)
Time Complexity?

```
1 SCC(adj[1..n])
2   DFS(adj)
3     let order[1..n] = node labels sorted by
4       largest to smallest finish time
5     reverse all edges in adj
6     colour[1..n] = [white, ..., white]
7     comp[1..n] = [0, ..., 0]
8     for i = 1..n
9       v = order[i]
10      if colour[v] == white
11        scc = scc + 1
12        SCCVisit(adj, v, scc, colour, comp)
13     end
14 return comp
```

Can be returned as part of the DFS with no added runtime

Finish times **increase** as we set them, so just use a stack...

Total of $O(n + m)$ work over all n iterations of the `i` loop

(each edge is inspected once, each node is visited once, constant work per visited node/inspected edge)

Total $O(n + m)$
CORRECTNESS

• Want to prove that each top-level call to SCCVisit explores *exactly* the nodes in one SCC
• Proof hinges on a key lemma that talks about the finish times of SCCs in the component graph
• To talk about finish times of SCCs, we need a definition…
A KEY DEFINITION

- For a strongly connected component C, let $d[C] = \min\{d[v] : v \in C\}$ and $f[C] = \max\{f[v] : v \in C\}$.

\[
d[C_1] = 19 = \min\{d[j], d[k], d[l]\}
\]

\[
f[C_1] = 24 = \max\{f[j], f[k], f[l]\}
\]

\[
d[C_4] = 1
\]

\[
f[C_4] = 14
\]

\[
d[C_2] = 15
\]

\[
f[C_2] = 18
\]

\[
d[C_3] = 5
\]

\[
f[C_3] = 10
\]
A KEY LEMMA

• **Lemma:** if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$ in G, then $f[C_i] > f[C_j]$

• **Proof.** Case 1 ($d[C_i] < d[C_j]$):
 • Let u be the earliest discovered node in C_i
 • All nodes in $C_i \cup C_j$ are white-reachable from u, so they are **descendants in the DFS forest** and **finish before** u
 • So $f[C_i] = f[u] > f[C_j]$

Component graph for G

C_i discovered first

$u =$ earliest discovered node in here
A KEY LEMMA

• **Lemma:** if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$ in G, then $f[C_i] > f[C_j]$

• **Proof. Case 2** ($d[C_j] < d[C_i]$):

 • Since component graph is a DAG, there is no path $C_j \rightarrow C_i$

 • Thus, no nodes in C_i are reachable from C_j

 • So we discover C_j and finish C_j without discovering C_i

 • Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED
COMPLETING THE PROOF

• Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph

• **We prove each top-level SCCVisit call visits precisely one SCC**

• Consider the first top-level SCCVisit(u)

• Let C be the SCC containing u and C' be any other SCC

• Since we call SCCVisit on nodes starting from the largest finish time,
 • We know $f(C) > f(C')$
• We know $f(C) > f(C')$

• By Lemma: if there were an edge $C' \rightarrow C$ in G, then we would have $f(C') > f(C)$

• So there is no edge $C' \rightarrow C$ in G

• and hence no edge $C \rightarrow C'$ in H

• So, $\text{SCCVisit}(u)$ in H cannot visit C'

Diagram:
- **Component graph C_G of G**
 - C'
 - C
- **Component graph C_H of H**
 - C'
 - C

... and sets $\text{comp}[v] = \text{scC}$ for all nodes in the SCC

So each top-level call explores one SCC... and larger finish time means already explored!

In G, edges go from larger to smaller finish times. In H, edges go from smaller to larger.

Similar argument for subsequent top-level calls to SCCVisit. So $\text{SCCVisit}(u)$ visits exactly the nodes in C