CS 341: ALGORITHMS

Lecture 14: graph algorithms III – topsort, DAG testing, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
DFS APPLICATION: TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a directed acyclic graph, or DAG, if G contains no directed cycle.
Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Back edge: points to an ancestor in the DFS forest
Case (\Leftarrow): Suppose \exists directed cycle. Show \exists back edge.

Let $v_1, v_2, \ldots, v_k, v_1$ be a directed cycle.
WLOG let v_1 be earliest discovered node in the cycle.

Consider edge $\{v_k, v_1\}$

Since $d[v_1] < d[v_k]$, $\{v_k, v_1\}$ must be a back or cross edge. Why?

Recall: nodes become gray when discovered.

So when v_1 is discovered, v_2, \ldots, v_k are all white.

Recall: every node v_i that is white-reachable from v_1 when we discover v_1 (call DFSVisit(v_1)) turns black before v_1 ($f[v_i] < f[v_1]$).

So v_k must turn black before v_1, and we have $f[v_k] < f[v_1]$.

Thus, $\{v_k, v_1\}$ must be a back edge. QED

Discovery/Finish Times

<table>
<thead>
<tr>
<th>Edge Type</th>
<th>Discovery/Finish Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>$d[v_k] < d[v_1] < f[v_1] < f[v_k]$</td>
</tr>
<tr>
<td>forward</td>
<td>$d[v_k] < d[v_1] < f[v_1] < f[v_k]$</td>
</tr>
<tr>
<td>back</td>
<td>$d[v_1] < d[v_k] < f[v_k] < f[v_1]$</td>
</tr>
<tr>
<td>cross</td>
<td>$d[v_1] < f[v_1] < d[v_k] < f[v_k]$</td>
</tr>
</tbody>
</table>
TURNING THE LEMMA INTO AN ALGORITHM

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

<table>
<thead>
<tr>
<th>edge type</th>
<th>colour of v</th>
<th>discovery/finish times</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>white</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>forward</td>
<td>black</td>
<td>$d[u] < d[v] < f[v] < f[u]$</td>
</tr>
<tr>
<td>back</td>
<td>gray</td>
<td>$d[v] < d[u] < f[u] < f[v]$</td>
</tr>
<tr>
<td>cross</td>
<td>black</td>
<td>$d[v] < f[v] < d[u] < f[u]$</td>
</tr>
</tbody>
</table>

When we observe an edge from u to v, check if v is gray.
DFS: TESTING WHETHER A GRAPH IS A DAG

global variables:
pred[1..n] = [null, null, ..., null]
colour[1..n] = [white, white, ..., white]
d[1..n] = [0, 0, ..., 0] // discovery times
f[1..n] = [0, 0, ..., 0] // finish times
time = 0
DAG = true

IsDAG(adj[1..n])
for v = 1..n
 if colour[v] == white
 DFSVisit(adj, v)
return DAG

DFSVisit(adj[1..n], v)
colour[v] = gray
time = time + 1
d[v] = time
for each w in adj[v]
 if colour[w] == white
 pred[w] = v
 DFSVisit(w)
 if color[w] == gray
 DAG = false
 colour[v] = black
time = time + 1
f[v] = time
Back edge found! So we set DAG = false
TOPOLOGICAL SORT

Finding node orderings that satisfy given constraints
DEPENDENCY GRAPH

- Edge \(\{u, v\}\) means \(u\) must be completed **before** \(v\)

Example problem: getting dressed in the morning

Pants before belt

Watch any time

Socks before shoes

Could do various things first. Which ones are possible? What do they have in common?
Topological sort

Try to order nodes linearly so there are only pointers from left to right!

IFF there is a (directed) cycle!

Might not be possible! How can this happen?
MORE REALISTIC USE CASE: TASK SCHEDULING

Goal: output a serial order of tasks that can be run without worrying about dependencies (because all dependencies are already satisfied by the time a task is run).

(Nodes are numbered according to one such order.)

Can even schedule tasks to run in parallel! Can do 1||2 then 3||13 then 4||5||15 etc.
A directed graph $G = (V, E)$ has a **topological ordering**, or **topological sort**, if there is a linear ordering $<$ of all the vertices in V such that $u < v$ whenever $uv \in E$.

Graph G

Topological sort of G

$v_3 < v_2 < v_5 < v_4 < v_1 < v_6$

Edges are directed **only left-to-right** in this ordering
USEFUL FACT

Lemma 6.5

A DAG contains a vertex of indegree 0.

Proof.

Suppose we have a directed graph in which every vertex has positive indegree. Let \(v_1 \) be any vertex. For every \(i \geq 1 \), let \(v_{i+1}v_i \) be an arc. In the sequence \(v_1, v_2, v_3, \ldots \), consider the first repeated vertex, \(v_i = v_j \) where \(j > i \). Then \(v_j, v_{j-1}, \ldots, v_i, v_j \) is a directed cycle.

One of these must be repeated. So there is a cycle!
Theorem 6.6

A directed graph D has a topological sort if and only if it is a DAG.

Proof.

(\Rightarrow): Suppose D has a directed cycle $v_1, v_2, \ldots, v_j, v_1$. Then $v_1 < v_2 < \cdots < v_j < v_1$, so a topological ordering does not exist.

(\Leftarrow): Suppose D is a DAG. Then the algorithm below constructs a topological ordering.

\[\square\]
Kahn(adj[1..n])

indeg[1..n] = [0, ..., 0]
for each edge (u,v) in adj
 indeg[v] = indeg[v] + 1

order = new list
q = new queue containing {v : indeg[v] == 0}
for i = 1..n
 if q.empty() return null
 v = q.dequeue()
 order.append(v)
 for each w in adj[v]
 indeg[w] = indeg[w] - 1
 if indeg[w] == 0 then q.enqueue(w)

return order

\[\text{indeg}[v] = \# \text{ of edges pointing into node } v \]

= number of unsatisfied constraints on \(v \)

Nodes with \(\text{indeg} \) \(0 \) have no unsatisfied dependencies

So this step is enqueuing nodes whose dependencies are already satisfied

\(q \) always contains nodes with no unsatisfied dependencies (indeg 0)

No such order!

Add \(v \) to the topological order

Remove \(v \)'s out edges. If we have now satisfied all dependencies for some \(w \), add \(w \) to the queue also.
EXAMPLE (KAHN’S ALGORITHM)

Compute **indegree** for all vertices

For each node u
 For each w in adj(u)
 w.deg = w.deg+1

vertices with indeg 0 go into the queue

Until Q is empty: pop, output that element, decrement its neighbours, enqueue new indeg 0’s

Queue Q

3 2 5 4 1 6

Output

```
3
2
1
4
5
6
```
Kahn(adj[1..n])

indeg[1..n] = [0, ..., 0]
for each edge (u,v) in adj
 indeg[v] = indeg[v] + 1

order = new list
q = new queue containing {v : indeg[v] == 0}
for i = 1..n
 if q.empty() return null
 v = q.dequeue()
 order.append(v)
 for each w in adj[v]
 indeg[w] = indeg[w] - 1
 if indeg[w] == 0 then q.enqueue(w)

return order

Running time with adjacency lists?

\[O(n) \]

\[O(n + m) \text{ total work over all iterations} \]

\[O(n) \text{ iterations} \]

\[O(1) \text{ per check} \]

\[\sum_{v \in V} \deg(v) \in O(n + m) \text{ total work over all nodes } v \]

Total \(O(n + m) \)
TOPOLOGICAL SORT VIA DFS

- We can also implement topological sort by using DFS!
- The **finishing times** of nodes help us
- Understanding this algo will be **key** for understanding strongly connected components
Lemma 6.8

Suppose D is a DAG. Then $f[v] < f[u]$ for every arc uv.

Recall from DAG-testing: there are no back edges in a DAG

Theorem: if D is a DAG, and we order vertices in reverse order of finishing time, (i.e., by largest to smallest finish time) then we get a topological ordering!

To see why, suppose D is a DAG and we order nodes in this way,
so $f_{v_1} > f_{v_2} > \cdots > f_{v_{n-1}} > f_{v_n}$

For contradiction, suppose a right-to-left edge $\{u,v\}$ exists

Since edge $\{u,v\}$ exists, the lemma implies $f_v < f_u$
But this contradicts the node ordering!

So all edges are left-to-right, hence this is a topological sort
TOPOLOGICAL ORDERING VIA DFS

\[O(n + m) \text{ w/adj. lists} \]

Global variables:

\[
\begin{align*}
\text{pred}[1..n] &= \text{[null, null, ..., null]} \\
\text{colour}[1..n] &= \text{[white, white, ..., white]} \\
\text{d}[1..n] &= \text{[0, 0, ..., 0]} \quad // \text{discovery times} \\
\text{f}[1..n] &= \text{[0, 0, ..., 0]} \quad // \text{finish times} \\
\text{time} &= 0 \\
\text{DAG} &= \text{true}
\end{align*}
\]

TopologicalSort(adj[1..n])

1. \(S = \text{new stack} \)
2. for \(v = 1..n \)
 1. if \(\text{colour}[v] = \text{white} \)
 1. DFSVisit(adj, v, S)
 2. if \(\text{DAG} \) then return \(S \)
3. return null

DFSVisit(adj[1..n], v, S)

1. \(\text{colour}[v] = \text{gray} \)
2. \(\text{time} = \text{time} + 1 \)
3. \(\text{d}[v] = \text{time} \)
4. for each \(w \) in \(\text{adj}[v] \)
 1. if \(\text{colour}[w] = \text{white} \)
 1. \(\text{pred}[w] = v \)
 2. DFSVisit(w)
 2. if \(\text{colour}[w] = \text{gray} \)
 1. \(\text{DAG} = \text{false} \)
 2. \(\text{colour}[v] = \text{black} \)
5. \(\text{S.push}(v) \)
6. \(\text{time} = \text{time} + 1 \)
7. \(\text{f}[v] = \text{time} \)

Save each node when it finishes

Push smallest finishing time first

\(\Rightarrow \) pop largest first
HOME EXERCISE: RUN ON THIS GRAPH

The initial calls are $DFSvisit(1)$, $DFSvisit(2)$ and $DFSvisit(3)$.

The discovery/finish times are as follows:

<table>
<thead>
<tr>
<th>v</th>
<th>$d[v]$</th>
<th>$f[v]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>$d[v]$</td>
<td>$f[v]$</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The topological ordering is 3, 2, 5, 4, 1, 6 (reverse order of finishing time).
I RENAMED "MY DOCUMENTS" ON YOUR COMPUTER TO "OUR DOCUMENTS"

YOU HAVEN'T TEXTED ME IN 1 MINUTE AND 42 SECONDS
WHY ARE YOU IGNORING ME?

STRONGLY CONNECTED COMPONENTS
This graph could be divided into **two graphs** that are each strongly connected.

These are called **strongly connected components (SCCs)**.
It could also be divided into three graphs…

But we want our SCCs to be maximal (as large as possible)
So, the goal is to find these (maximal) SCCs:
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Finding **all cyclic** dependencies in code
- Can find **single** cycle with an easier DFS-based algorithm
- But it is nicer to find **all** cycles at once, so you don’t have to fix one to expose another
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- **Data filtering** before running other algorithms
- Consider Google maps; nodes = intersections, edges = roads
- Don’t want to run path finding algorithm on the entire **global** graph!
- First restrict execution to a rectangle
- Then throw away everything except the (maximal) SCC containing source & target
FORMALLY DEFINING SCC

For two vertices x and y of G, define $x \sim y$ if $x = y$; or if $x \neq y$ and there exist directed paths from x to y and from y to x.

The relation \sim is an equivalence relation.

The strongly connected components of G are the equivalence classes of vertices defined by the relation \sim.

A strongly connected component of a digraph G is a maximal strongly connected subgraph of G.

Note: a connected component can contain just a single node

Example: a node with no out-edges
Consider this graph
These are its SCCs

The following is its component graph
It has one node for each SCC

And an edge between two nodes IFF there is an edge between the corresponding SCCs

Can there be a cycle in the component graph?
No! If there are paths both ways between components, they are actually the same SCC
Component graph is a DAG!
BRAINSTORMING AN ALGORITHM

- What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire graph is strongly connected?)

This will definitely visit every node in \(a \)'s SCC

And in fact it might visit other SCCs as well...

\[
\text{DFSVisit}(a) \quad \text{DFSVisit}(h) \quad \text{DFSVisit}(j)
\]

Showing discovery times

Showing finish times
What if we run DFS, then reverse all edges, then run DFS?

DFSVisit(a) DFSVisit(h) DFSVisit(j)

a,14 b,12 c,11 d,13

 DFSVisit(a) DFSVisit(e) DFSVisit(h)

reverse edges

f,9 g,8 e,10

Problem: from h, we can reach other SCCs

We fail to identify SCC \{h, i\}

Then, each DFSVisit will visit exactly one SCC

(So we don't visit them again)

What if we perform DFSVisit calls in a different order in the reverse graph?

Other reachable SCCs should be visited first
Consider component graph C_G of G (which we want to compute).

If we call DFSVisit in G from largest to smallest finish times, we can reach other SCCs.

However, when we reverse the edges to get graph H...

Calling DFSVisit on nodes ordered from largest to smallest finish times, we cannot reach other (unvisited) SCCs!
This is called Sharir’s algorithm (sometimes Kosaraju’s algorithm). This paper first introduced it.
Running Sharir’s Algorithm

Phase 1: DFS to get finish times

Phase 2: DFSVisit reverse graph by reverse finish times

DFSVisit(j) DFSVisit(h) DFSVisit(e) DFSVisit(a)

$scc = 4$
TIME COMPLEXITY?

`O(n + m)`

Can be returned as part of the DFS with no added runtime.

Finish times increase as we set them, so just use a stack...

`O(n + m)`

Total of `O(n + m)` work over all `n` iterations of the `i` loop.

(Each edge is inspected once, each node is visited once, constant work per visited node/inspected edge.)
CORRECTNESS

- Want to prove that each top-level call to SCCVisit explores **exactly** the nodes in one SCC
- Proof hinges on a key lemma that talks about the **finish times of SCCs** in the **component graph**
- To talk about finish times of SCCs, we need a definition...
For a strongly connected component C, let $d[C] = \min\{d[v] : v \in C\}$ and $f[C] = \max\{f[v] : v \in C\}$.

- $d[C_1] = 19 = \min\{d[j], d[k], d[l]\}$
- $d[C_2] = 15$
- $d[C_3] = 5$
- $d[C_4] = 1$

- $f[C_1] = 24 = \max\{f[j], f[k], f[l]\}$
- $f[C_2] = 18$
- $f[C_3] = 10$
- $f[C_4] = 14$
A KEY LEMMA

- **Lemma**: if C_i, C_j are SCCs and there is an edge $C_i \to C_j$ in G, then $f[C_i] > f[C_j]$

- **Proof.** Case 1 ($d[C_i] < d[C_j]$):
 - Let u be the earliest discovered node in C_i
 - All nodes in $C_i \cup C_j$ are white-reachable from u, so they are **descendants in the DFS forest** and **finish before** u
 - So $f[C_i] = f[u] > f[C_j]$
A KEY LEMMA

• **Lemma:** if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$ in G, then $f[C_i] > f[C_j]$

• **Proof. Case 2 ($d[C_j] < d[C_i]$):**
 - Since component graph is a DAG, there is no path $C_j \rightarrow C_i$
 - Thus, no nodes in C_i are reachable from C_j
 - So we discover C_j and finish C_j without discovering C_i
 - Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED
COMPLETING THE PROOF

- Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph.
- **We prove each top-level SCCVisit call visits precisely one SCC**
- Consider the first top-level SCCVisit(u)
- Let C be the SCC containing u and C' be any other SCC
- Since we call SCCVisit on nodes starting from the largest finish time,
 - We know $f(C') > f(C')$

component graph C_G of G
COMPLETING THE PROOF

- We know $f(C) > f(C')$
- By Lemma: if there were an edge $C' \rightarrow C$ in G, then we would have $f(C') > f(C)$
 - So there is no edge $C' \rightarrow C$ in G
 - and hence **no edge** $C \rightarrow C'$ in H
 - So, $SCCVisit(u)$ in H cannot visit C'

... and sets $\text{comp}[v] = \text{scc}$ for all nodes in the SCC

So each top-level call explores one SCC and **larger finish time** means already explored!

In G, edges go from larger to smaller finish times. In H, edges go from smaller to larger.

Similar argument for subsequent top-level calls to SCCVisit.

So $SCCVisit(u)$ visits exactly the nodes in C