CS 341: ALGORITHMS

Lecture 15: graph algorithms IV – minimum spanning trees

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
Problem can also be defined for directed graphs...

• Consider an **undirected** graph in which each **edge** has a **weight** (or cost)
Problem can also be defined for minimum spanning forest. Algorithm taught here works.
APPLICATION: INTERNET BACKBONE PLANNING

• Want to connect n cities with internet backbone links
 • Direct links possible between each pair of cities
 • Each link has a certain dollar cost (excavation, materials, distance & time, legal costs...)
 • Want to minimize total cost
break image into **regions** by colour similarity via other techniques

turn regions into nodes, and add edges between them with weights = “dissimilarity,” then build MST

break MST into large, highly similar **segments**, and assign the dominant colour to each **segment**

Segments are easier for a machine learning algorithm to understand.

Just for fun, don’t need to know this
APPLICATION: CURVILINEAR FEATURE EXTRACTION

Want a machine to recognize this object

Edge detection algorithm

MST

Final result

Just for fun, don’t need to know this

“Hair” removal

Paper

Input to image recognition alg.
A tree on n vertices has $n - 1$ edges.

There is a unique path between any two vertices in a tree.

If T is a tree and an edge $e \notin T$ is added to T, then the resulting graph contains a unique cycle C.

If $e' \in C$ then $T \cup \{e\} \setminus \{e'\}$ is a tree.

If you add an edge e to a tree and this creates a cycle C, then removing any other edge $e' \in C$ will break the cycle and produce a tree.
Suppose we have an oracle \texttt{wouldCreateCycle}\((e_j)\)

Kruskal’s algorithm [introduced in this 3-page paper from 1955]

Assume that \(w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m)\), where \(m = |E|\).

Algorithm: \texttt{Kruskal}\((G, w)\)

\[A \leftarrow \emptyset\]

\textbf{for} \(j \leftarrow 1\) \textbf{to} \(m\)

\[
\begin{cases}
\text{if } A \cup \{e_j\} \text{ does not contain a cycle} \\
\text{then } A \leftarrow A \cup \{e_j\}
\end{cases}
\]

\textbf{return} \((A)\)
Increasing edge weights: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

- 8 would create a cycle: a, c, b, d, a
- 11 would create a cycle: d, e, b, d
- 14 would create a cycle: c, f, e, b, d, a, c
- 15 would create a cycle: g, f, h, j, l, g
- 16 would create a cycle...
- 17 would create a cycle...
- 18 would create a cycle...
- 19 would create a cycle...
- 20 would create a cycle...

Done!
UNION FIND

• Represents a **partition** of set $S = \{e_1, \ldots, e_n\}$ into **disjoint subsets**
 • Initially n disjoint subsets $S_i = \{e_i\}$

• Operations
 • $\text{Union}(S_i, S_j)$ replaces S_i and S_j by their union $S_i \cup S_j$
 • $\text{Find}(e_i)$ returns the **label** of the set containing e_i

To avoid strange/long names, keep one of the original set names S_2.
KRUSKAL’S USING UNION-FIND

• Each graph node is initially in its own subset
• Add an edge \rightarrow union two subsets
• An edge creates a cycle IFF its endpoints are in the same subset

Graph:

Union-find:

Both endpoints already in same set! Do not add.
PSEUDOCODE FOR KRUSKAL’S USING UNION-FIND

1. Kruskal(V[1..n], E[1..m])
2. sort E[1..m] in increasing order by weight
3. uf = new UnionFind data structure
4. mst = new List
5. for j = 1..m
6. set_a = uf.find(E[j].source)
7. set_b = uf.find(E[j].target)
8. if set_a != set_b
9. mst.add(E[j])
10. uf.merge(set_a, set_b)
11. return mst
Suppose K is not an MST, for contradiction. Let O be an (optimal) MST. Note $O \neq K$.

Let $f_j = \text{first edge in } K \setminus O$ (exists since $K \neq O$)

Label edges so $w(f_1) < w(f_2) < \cdots < w(f_{n-1})$. (we prove this for distinct weights)

Adding f_j to O would create cycle C

Let $e' = \text{smallest edge in } C \setminus K$ (exists since no cycles in K)

Let O' be same as O but with e' and f_j swapped

Note $w(O') = w(O) + w(f_j) - w(e')$

$w(O') \geq w(O)$ since O is optimal

So $w(f_j) - w(e') \geq 0$, so $w(f_j) > w(e')$

Kruskal considers e' before f_j, and rejects e' despite taking f_1, \ldots, f_{j-1}

So, $f_1, \ldots, f_{j-1}, e' \in O$. Contradiction!
Kruskal(V[1..n], E[1..m])
sort E[1..m] in increasing order by weight
uf = new UnionFind data structure
mst = new List
for j = 1..m
 set_a = uf.find(E[j].source)
 set_b = uf.find(E[j].target)
 if set_a != set_b
 mst.add(E[j])
 uf.merge(set_a, set_b)
return mst
UNION FIND IMPLEMENTATION

- Suppose we are partitioning set $\{1, \ldots, n\}$ into **subsets** S_1, \ldots, S_n
- Represent the partition as a **forest** of **trees**
 - Initially one single-node tree per subset
 - Each node has a **parent pointer**
- $\text{Find}(i)$ returns the **root** of the tree containing **element** i
- $\text{Union}(i, j)$ makes one root the parent of the other

Let’s union the **sets** containing **elements** 1 and 2
- $\text{find}(1) \to 1$, $\text{find}(2) \to 2$
- $\text{Union}(1,2)$: $\text{parent}[1] = 2$

How about elements 4 and 1?
- $\text{find}(4) \to 4$, $\text{find}(1) \to 2$
- $\text{Union}(4,2)$: $\text{parent}[2] = 4$

How about elements 3 and 1?
- $\text{find}(3) \to 3$, $\text{find}(1) \to 4$
- $\text{Union}(3,4)$: $\text{parent}[3] = 4$

Union-find forest (physical):

<table>
<thead>
<tr>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 4 4 4</td>
</tr>
</tbody>
</table>

Union-find forest (logical):
PROBLEM: SLOW FIND()

Long paths \rightarrow slow find()

Find runtime could be $O(\text{number of unions performed})$
• Keep track of **heights** of trees

• Make **root with greater height** be the **parent**

 • Union of two trees with height \(h \) has height \(h + 1 \)

 • Union of tree with height \(h \) and tree with height \(< h \) has height \(h \)

• **Runtime** with union by rank?

Union-find forest:

```
1 -> 1
2 -> 2
3 -> 3
4 -> 4
```

Let’s union the sets containing **elements 1 and 2**

\[
\begin{align*}
\text{find}(1) & \rightarrow 1, \quad \text{find}(2) \rightarrow 2 \\
\text{Union}(1,2): \text{same height} & \rightarrow \text{parent}[1] = 2
\end{align*}
\]

How about elements 4 and 1?

\[
\begin{align*}
\text{find}(4) & \rightarrow 4, \quad \text{find}(1) \rightarrow 2 \\
\text{Union}(4,2): \text{2's height is greater} & \rightarrow \text{parent}[4] = 2
\end{align*}
\]
RUNTIME OF UNION BY RANK

- Can prove the following lemma by induction:
 - Each tree of height h contains at least 2^h nodes

Case 1: trees of different height

By I.H., left tree already has $\geq 2^h$ nodes.
So result has height h and $\geq 2^h$ nodes
RUNTIME OF UNION BY RANK

• Can prove the following lemma by induction:
 • Each tree of height h contains at least 2^h nodes

Case 2: trees of same height

By I.H., each tree has $\geq 2^h$ nodes.
Result has height $h + 1$ and $\geq 2^h + 2^h$ nodes

And $2^h + 2^h = 2^{h+1}$. QED
RUNTIME OF UNION BY RANK

• How does the **lemma** help?
 • Each tree of height h contains at least 2^h nodes
 • There are only n **nodes** in the graph
 • So **height** is at most $\log n$
 • (Lemma: a tree of height $\log n$
 contains at least $2^{\log n}$ nodes
 and $2^{\log n} = n$)
 • So the longest path in the union-find forest is $\log n$
 • So all union-find operations run in $\Theta(\log n)$ time!
TIME COMPLEXITY USING UNION BY RANK

Kruskal(V[1..n], E[1..m])

sort E[1..m] in increasing order by weight
uf = new UnionFind data structure
mst = new List
for j = 1..m
 set_a = uf.find(E[j].source)
 set_b = uf.find(E[j].target)
 if set_a != set_b
 mst.add(E[j])
 uf.merge(set_a, set_b)
return mst

Total $O(m \log n + m \log m)$

Trick: $\log m \leq \log n^2 = 2 \log n \in O(\log n)$

So runtime is in $O(m \log n)$
MAKING THIS EVEN FASTER

- In addition to union by rank, union-find can be implemented with **path compression**

Using both union by rank and path compression, we get a total running time for Kruskal's algorithm of $O(\alpha(m + n)(m + n))$, where $\alpha(x)$ is the inverse Ackermann function. For all practical x, $\alpha(x) \leq 5$, so this is **pseudo-linear**.
class UnionFind {
 int * parent,
 int * rank;
 UnionFind(int n) {
 parent = new int[n];
 rank = new int[n];
 for (int i=0; i<n; i++) {
 rank[i] = 0;
 parent[i] = i;
 }
 }
 ~UnionFind() {
 delete[] parent;
 delete[] rank;
 }
 int find(int u) {
 if (u != parent[u]) parent[u] = find(parent[u]);
 return parent[u];
 }
 void merge(int x, int y) {
 x = find(x), y = find(y);
 if (rank[x] > rank[y]) parent[y] = x;
 else parent[x] = y;
 if (rank[x] == rank[y]) rank[y]++;
 }
};

OTHER NOTABLE MST ALGORITHMS

• Prim’s algorithm
 • Incrementally extend a tree T into an MST, by:
 • Initializing T to contain any arbitrary node in G
 • Repeatedly selecting the smallest weight edge from any node in T to any node outside of T
 • Visualization: https://www.cs.usfca.edu/~galles/visualization/Prim.html

• Borůvka’s algorithm
 • Like Kruskal (merging components), but with phases
 • In each phase, select an outgoing edge for every component, and add all edges found in the phase

Use priority queue to store outgoing edges from T (and repeatedly extract the minimum weight one)

There is also a fast parallel hybrid of Prim and Borůvka
A FUN APPLICATION: MAZE BUILDING

- Create grid graph with
- edges up/down/left/right
- **Randomize edge weights**
 then run Kruskal’s
VISUALIZING KRUSKAL’S (WITHOUT PATH COMPRESSION)

• https://www.cs.usfca.edu/~galles/visualization/Kruskal.html