CS 341: ALGORITHMS

Lecture 15: graph algorithms VI – all pairs shortest paths

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
ALL PAIRS SHORTEST PATHS (APSP) PROBLEM

Instance: A directed graph $G = (V, E)$, and a weight matrix W, where
$W[i, j]$ denotes the weight of edge ij, for all $i, j \in V, i \neq j$.

Find: For all pairs of vertices $u, v \in V, u \neq v$, a directed path P from u
to v such that

$$w(P) = \sum_{ij \in P} W[i, j]$$

is minimized.

We allow edges to have negative weights, but we assume there are no
negative-weight directed cycles in G.
We use the following conventions for the weight matrix W:

$$W[i, j] = \begin{cases} w_{ij} & \text{if } (i, j) \in E \\ 0 & \text{if } i = j \\ \infty & \text{otherwise.} \end{cases}$$

from: $\begin{array}{c} a \\ b \\ c \\ d \end{array}$

to: $\begin{array}{cccc} a & b & c & d \\ \hline a & 0 & 3 & \infty & \infty \\ b & \infty & 0 & 12 & 5 \\ c & 4 & \infty & 0 & -1 \\ d & 2 & -4 & \infty & 0 \end{array}$
Run Bellman-Ford \(n \) times, once for each possible source.

Complexity \(O(n^2 m) \). (Could be \(O(n^4) \).)

Can we do better?

Output: Matrix \(D \) of shortest path lengths

\[
D_{aa} = 0 \quad D_{ab} = 3 \quad D_{ba} = 7 \quad D_{bb} = 0 \quad D_{ca} = 1 \quad D_{cb} = -5 \quad D_{da} = 2 \quad D_{db} = -4
\]

\[
D_{ac} = 15 \quad D_{bc} = 12 \quad D_{cd} = -1 \quad D_{cc} = 0 \quad D_{dc} = 8
\]

Matrix \(D \) of shortest path lengths:

\[
D[i, j] = \begin{bmatrix}
0 & 3 & 15 & 8 \\
7 & 0 & 12 & 5 \\
1 & -5 & 0 & -1 \\
2 & -4 & 8 & 0
\end{bmatrix}
\]
Let $P = \text{minimum weight } (i, j)\text{-path with } \leq m \text{ edges}$

Let $\mathcal{L}_m[i, j]$ denote the minimum-weight (i, j)-path having at most m edges.

We want to compute \mathcal{L}_{n-1}:

Base case: $L_1 = W$

General case: How to express solution in terms of optimal solutions to subproblems?

Express shortest path with m edges in terms of shortest path(s) with $< m$ edges?

For $m \geq 2$,

$$L_m[i, j] = \min\{L_{m-1}[i, k] + L_1[k, j] : 1 \leq k \leq n\}.$$

Problem: we don’t know the predecessor of j on the optimal path P.

Try all possible predecessors k.
Algorithm: FairlySlowAllPairsShortestPath(W)

$L_1 \leftarrow W$

for $m \leftarrow 2$ to $n - 1$

for $i \leftarrow 1$ to n

for $j \leftarrow 1$ to n

do $L_m[i, j] \leftarrow \infty$

for $k \leftarrow 1$ to n

do $\ell \leftarrow \min\{\ell, L_{m-1}[i, k] + W[k, j]\}$

$\ell \leftarrow \min\{\ell, L_{m-1}[i, k] + W[k, j]\}$

return (L_{n-1})

Time complexity? $O(n^4)$

Space complexity is a bit subtle…

To compute L_m, only need W and L_{m-1}. No need to keep L_2, \ldots, L_{m-2}. So space is $O(|W| + |L_m| + |L_{m-1}|) = O(|L_m|) = O(n^2)$

Home exercise: do we need to keep both L_m and L_{m-1}? Or can we reuse L_{m-1} directly as our L_m array, and modify it in-place?

Note: this is asymptotically the same as input size for dense graphs where $|E| \in \Theta(|V|^2)$
BETTER SOLUTION: SUCCESSIVE DOUBLING

The idea is to construct $L_1, L_2, L_4, \ldots L_{2^t}$, where t is the smallest integer such that $2^t \geq n - 1$.

Initialization: $L_1 = W$ (as before).

Let $P = \text{minimum weight } (i, j)\text{-path with } \leq 2m \text{ edges}$

and $k = \text{midpoint node of } P$

Then $P = P_1 \cup P_2$ where:

- P_1 is the minimum weight (i, k)-path with $\leq m$ edges
- P_2 is the minimum weight (k, j)-path with $\leq m$ edges

Updating: For $m \geq 1$,

$$L_{2m}[i, j] = \min\{L_m[i, k] + L_m[k, j] : 1 \leq k \leq n\}.$$
Complexity analysis

$O(n^3 \log n)$ runtime

$O(n^2)$ space

Second Solution: Successive Doubling

Algorithm: FasterAllPairsShortestPath(W)

$L_1 \leftarrow W$

$m \leftarrow 1$

while $m < n - 1$

 for $i \leftarrow 1$ to n

 for $j \leftarrow 1$ to n

 do

 for $k \leftarrow 1$ to n

 do

 $\ell \leftarrow \infty$

 do $\ell \leftarrow \min\{\ell, L_m[i, k] + L_m[k, j]\}$

 $L_{2m}[i, j] \leftarrow \ell$

 $m \leftarrow 2m$

 return (L_m)
• **First solution:** sub-problem is a path to the **predecessor node**
 • Optimality: try all possible predecessor nodes k

• **Second solution:** sub-problems are paths to/from the **midpoint node**
 • Optimality: try all possible midpoint nodes k

• **Third solution:** sub-problems are paths in which **all interior nodes** are in $\{1..k-1\}$
 • I.e., we restrict paths to using a **prefix** of all nodes
 • Optimality: try all ways to use **new node k** as an interior node
Let $D_k[i, j]$ denote the length of the minimum-weight path $i \leftrightarrow j$ in which all interior nodes are in the set $\{1, \ldots, k\}$.

We want to compute D_n.

Let P be a min-weight (i, j)-path in which all interior nodes are in $\{1, \ldots, k\}$.

Case 1: k is not used in P

interior nodes are all in $\{1, \ldots, k - 1\}$

Then $D_k[i, j] = D_{k-1}[i, j]$

Case 2: k is used in P

interior nodes are all in $\{1, \ldots, k - 1\}$

How can we argue k is not in either P_1 or P_2?

Because P would then contain a cycle, and the cycle cannot make P shorter.

So there must be an equivalent or better P without a cycle.

Then $D_k[i, j] = D_{k-1}[i, k] + D_{k-1}[k, j]$

Optimal solution: interior nodes are all in $\{1, \ldots, k\}$

More formal proof in bonus slides.
Let \(D_k[i, j] \) denote the length of the minimum-weight \((i, j)\)-path in which all interior nodes are in the set of nodes \(\{1 \ldots k\} \).

Base case: \(D_0 = W \)

Recurrence: \(D_k[i, j] = \min\{D_{k-1}[i, j], D_{k-1}[i, k] + D_{k-1}[k, j]\} \)

```plaintext
FloydWarshall(W[1..n, 1..n])
  D0 = copy of weight matrix W
  D1 = new n * n matrix
  Dlast = pointer to D0
  Dcurr = pointer to D1
  for k = 1..n
    for i = 1..n
      for j = 1..n
        Dcurr[i,j] = min( Dlast[i,j], Dlast[i,k] + Dlast[k,j] )
    swap pointers Dlast and Dcurr
  return Dlast
```

This returns **distances**. Can reconstruct paths from this.
EXAMPLE

\[D_0 = \begin{pmatrix} 0 & 3 & \infty & \infty \\ \infty & 0 & 12 & 5 \\ 4 & \infty & 0 & -1 \\ 2 & -4 & \infty & 0 \end{pmatrix} \quad D_1 = \begin{pmatrix} 0 & 3 & \infty & \infty \\ \infty & 0 & 12 & 5 \\ 4 & 7 & 0 & -1 \\ 2 & -4 & \infty & 0 \end{pmatrix} \]

\[D_2 = \begin{pmatrix} 0 & 3 & 15 & 8 \\ \infty & 0 & 12 & 5 \\ 4 & 7 & 0 & -1 \\ 2 & -4 & 8 & 0 \end{pmatrix} \quad D_3 = \begin{pmatrix} 0 & 3 & 15 & 8 \\ \infty & 0 & 12 & 5 \\ 16 & 0 & 12 & 5 \\ 4 & 7 & 0 & -1 \\ 2 & -4 & 8 & 0 \end{pmatrix} \]

\[D_4 = \begin{pmatrix} 7 & 0 & 12 & 5 \\ 1 & -5 & 0 & -1 \\ 2 & -4 & 8 & 0 \end{pmatrix} \]
STABLE MATCHING PROBLEM
(SOLVED WITH A GREEDY GRAPH ALGORITHM)
Problem 4.6

Stable Matching

Instance: Two sets of size n say $X = [x_1, \ldots, x_n]$ and $Y = [y_1, \ldots, y_n]$. Each x_i has a preference ranking of the elements in Y, and each y_i has a preference ranking of the elements in X. $\text{pref}(x_i, j) = y_k$ if y_k is the j-th favourite element of Y of x_i; and $\text{pref}(y_i, j) = x_k$ if x_k is the j-th favourite element of X of y_i.

Find: A matching of the sets X and Y such that there does not exist a pair (x_i, y_j) which is not in the matching, but where x_i and y_j prefer each other to their existing matches. A matching with this property is called a stable matching.

Real-world examples (1950s):

- Matching medical interns to hospitals.
- Matching organs to patients requiring transplants

The 2012 Nobel Prize in economics was awarded to Roth and Shapley for their work in the “theory of stable allocation and the practice of market design”.

An example of an instability: Suppose x_i is matched with y_j, x_k is matched with y_{ℓ}, x_i prefers y_{ℓ} to y_j, and y_{ℓ} prefers x_i to x_k.

\[x_i \rightarrow y_j \]
\[x_k \rightarrow y_{\ell} \]
Overview of the Gale-Shapley Algorithm

Elements of X propose to elements of Y.

If y_j accepts a proposal from x_i, then the pair $\{x_i, y_j\}$ is matched.

An unmatched y_j must accept a proposal from any x_i.

If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k, where y_j prefers x_k to x_i, then y_j accepts and the pair $\{x_i, y_j\}$ is replaced by $\{x_k, y_j\}$.

If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k, where y_j prefers x_i to x_k, then y_j rejects and nothing changes.

A matched y_j never becomes unmatched.

An x_i might make a number of proposals (up to n); the order of the proposals is determined by x_i’s preference list.
Algorithm: *Gale-Shapley* \((X, Y, \text{pref})\)

\[\text{Match} \leftarrow \emptyset \]

\[\text{while there exists an unmatched } x_i \]

\[\begin{cases} \text{let } y_j \text{ be the next element in } x_i \text{'s preference list} \\ \text{if } y_j \text{ is not matched} \\ \quad \text{then } \text{Match} \leftarrow \text{Match} \cup \{x_i, y_j\} \\ \quad \text{suppose } \{x_k, y_j\} \in \text{Match} \\ \quad \text{if } y_j \text{ prefers } x_i \text{ to } x_k \\ \quad \text{else} \\ \qquad \text{then } \text{Match} \leftarrow \text{Match} \setminus \{x_k, y_j\} \cup \{x_i, y_j\} \\ \quad \text{comment: } x_k \text{ is now unmatched} \end{cases} \]

\[\text{return } (\text{Match}) \]
EXAMPLE:

Suppose we have the following preference lists:

\[
\begin{align*}
 x_1 : & y_2 > y_3 > y_1 \\
 x_2 : & y_1 > y_3 > y_2 \\
 x_3 : & y_1 > y_2 > y_3 \\
 y_1 : & x_1 > x_2 > x_3 \\
 y_2 : & x_2 > x_3 > x_1 \\
 y_3 : & x_3 > x_2 > x_1
\end{align*}
\]

The *Gale-Shapley algorithm* could be executed as follows:

<table>
<thead>
<tr>
<th>proposal</th>
<th>result</th>
<th>Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) proposes to (y_2)</td>
<td>(y_2) accepts</td>
<td>({x_1, y_2})</td>
</tr>
<tr>
<td>(x_2) proposes to (y_1)</td>
<td>(y_1) accepts</td>
<td>({x_1, y_2}, {x_2, y_1})</td>
</tr>
<tr>
<td>(x_3) proposes to (y_1)</td>
<td>(y_1) rejects</td>
<td></td>
</tr>
<tr>
<td>(x_3) proposes to (y_2)</td>
<td>(y_2) accepts</td>
<td>({x_3, y_2}, {x_2, y_1})</td>
</tr>
<tr>
<td>(x_1) proposes to (y_3)</td>
<td>(y_3) accepts</td>
<td>({x_3, y_2}, {x_2, y_1}, {x_1, y_3})</td>
</tr>
</tbody>
</table>
Proof of Correctness

First we need to show that the algorithm always terminates, i.e., it is impossible that an unmatched x_i has proposed to every y_j.

Termination of the algorithm: Once an element of Y is matched, they are never unmatched. If x_i has proposed to every y_j, then every y_j is matched. But then every element of X is matched, which is a contradiction.

So the algorithm terminates, and each x_i is matched with some y_j

Need to argue the matching is stable (i.e., optimal)

That is, no x_i and y_j prefer each other more than their current partners
To prove that the algorithm terminates with a stable matching: Suppose there is an instability: x_i is matched with y_j, x_k is matched with y_ℓ, x_i prefers y_ℓ to y_j and y_ℓ prefers x_i to x_k.

Observe: x_i proposes to y_ℓ before proposing to y_j

There three cases to consider:

1. y_ℓ rejected x_i’s proposal.
2. y_ℓ accepted x_i’s proposal, but later accepted another proposal.
3. y_ℓ accepted x_i’s proposal, and did not accept any subsequent proposal.

Then y_ℓ should end up matched with x_i. Contradiction!

Other proposal must be to someone better. Contradiction!

Contradicts our assumption that this instability exists!

All three cases are impossible, so assumption is wrong. There **cannot** be an instability!
COMPLEXITY

It is obvious that the number of iterations is at most n^2 since every x_i proposes at most once to every y_j.

The average number of iterations is $\Theta(n \log n)$ (but we will not prove this).

But how much time does it take per iteration?
Algorithm: Gale-Shapley \((X, Y, \text{pref})\)

\[
\text{Match} \leftarrow \emptyset
\]

while there exists an unmatched \(x_i\)

let \(y_j\) be the next element in \(x_i\)'s preference list

if \(y_j\) is not matched

then \(\text{Match} \leftarrow \text{Match} \cup \{x_i, y_j\}\)

else

suppose \(\{x_k, y_j\} \in \text{Match}\)

if \(y_j\) prefers \(x_i\) to \(x_k\)

then \(\text{Match} \leftarrow \text{Match} \setminus \{x_k, y_j\} \cup \{x_i, y_j\}\)

comment: \(x_k\) is now unmatched

return \((\text{Match})\)

Depends on how we implement the algorithm...

Maintain a **queue** of unmatched \(x\) elements

Simple **list** of preferences

Want to know who \(y_j\) is matched with

Maintain **arrays** of matches. If \(x_i\) and \(y_j\) are matched then \(M_x[i] = j\) and \(M_y[j] = i\) (Initially \(M_x[i], M_y[i] = 0\))

Want to **quickly** look up \(y_j\)'s **rank** for \(x_i\) and \(x_k\)

Construct an **array** \(R[j, i]\) containing the **rank** of \(x_i\) in \(y_j\)'s preference list

I.e., want \(R[j, i] = k\) if \(x_i\) is \(y_j\)'s \(k\)-th favourite partner

So, we get \(O(1)\) time per iteration, and \(O(n^2)\) time in total

\(0(n^2)\) preprocessing

Allows comparing two ranks in \(O(1)\) time!

Exercise: try writing pseudocode for this implementation
FORMULATING GRAPH PROBLEMS
Graphs are a very important formalism in computer science. Efficient algorithms are available for many important problems:

- exploration,
- shortest paths,
- minimum spanning trees, etc.

If we formulate a problem as a graph problem, chances are that an efficient non-trivial algorithm for solving the problem is known.

Some problems have a natural graph formulation.

- For others we need to choose a less intuitive graph formulation.
- Some problems that do not seem to be graph problems at all can be formulated as such.
The RootBear Problem:

Suppose we have a canyon with perpendicular walls on either side of a forest.

- We assume a north wall and a south wall.

Viewed from above we see the A&W RootBear attempting to get through the canyon.

- We assume trees are represented by points.
- We assume the bear is a circle of given diameter d.
- We are given a list of coordinates for the trees.

Find an algorithm that determines whether the bear can get through the forest.
For each input point \((x,y)\): add vertices \((x,0), (x,h), (x,y)\) to \(V\)

For all pairs of vertices \(u, v\) in \(V\): if \(\text{dist}(u,v) < d\), add edge \(uv\)

Also add edges between all vertices on each canyon wall

Bear cannot get through the canyon if North and South walls are connected

Test connectivity using BFS from any point on the North wall, and checking if any point on the South wall is visited.

Exercise: what if each tree had radius \(r\)?
Reliable network routing:
- Suppose we have a computer network with many links.
- Every link has an assigned reliability.
 - The reliability is a probability between 0 and 1 that the link will operate correctly.
- Given nodes u and v, we want to choose a route between nodes u and v with the highest reliability.
 - The reliability of a route is a product of the reliabilities of all its links.

Reliability of path $a \rightarrow b \rightarrow c \rightarrow d$: $0.5 \times 0.9 \times 0.75 = 0.3375$

Higher reliability via path $a \rightarrow b \rightarrow d$: $0.5 \times 0.8 = 0.4$
Problem 1: need **product** of weights **not sum**

Use **logs** to turn product of weights into a **sum**.
Recall: \(\log xy = \log x + \log y \). So \(\log \prod w = \sum \log w \).

\[
\log \prod \frac{1}{w} = \log \frac{1}{\prod w} = \log 1 - \log \prod w = -\log \prod w
\]

\[
= -\sum \log w = \sum (-\log w)
\]

Want to minimize this!

Solution: create a new graph where each weight \(w \) is replaced with weight \(-\log w \).

A path \(P \) has **maximum** \(\prod w \)
IFF it has **maximum** \(\log \prod w \)
IFF it has **minimum** \(\log \prod \frac{1}{w} \)

Shortest path **minimizes** a **sum** of weights \(\sum w \)

Can we turn this into a **shortest path** problem?

Problem 2: want to **maximize** the product

\[
-\log 0.5 = 0.155
-\log 0.9 = 0.322
\]

if \(w \leq 1 \) then \(\log w \leq 0 \)
so \((-\log w) \geq 0 \)

So we can use Dijkstra!
A MORE FORMAL OPTIMALITY ARGUMENT FOR YOUR NOTES

By induction: **suppose** $D_{m-1}[i, j]$ **is correct** for all i, j. We show $D_m[i, j]$ **is correct**.

Case 1: m **is not** used in P
- Interior nodes are all in $\{1 \ldots m-1\}$

Then $w(P) = D_{m-1}[i, j]$ by I.H., and $D_m[i, j] = D_{m-1}[i, j]$.

(If m appears twice in P, it creates a cycle which can be removed to get P' with same or better weight)

- (details in slide notes)

Case 2: m **is used in** P
- Interior nodes are all in $\{1 \ldots m\}$

Claim: \exists optimal path $P' = P'_1, m, P'_2$ such that P'_1 and P'_2 have all interior nodes in $\{1 \ldots m-1\}$

Reduce P_1, P_2 **to subproblems**
- But what if $m \in P_1, P_2$?

Let P be a min-weight (i, j)-path in which all interior nodes are in $\{1 \ldots m\}$
- All interior nodes in $\{1 \ldots m-1\}$

Consider P'

By I.H., $w(P'_1) = D_{m-1}[i, m]$ and $w(P'_2) = D_{m-1}[m, j]$.

And $w(P'_1) + w(P'_2) = D_{m-1}[i, m] + D_{m-1}[m, j] = D_m[i, j]$.

(Base case $D_0[i, j]$ is left as an exercise)