FLOWS AND PATHS

• **Edge-disjoint paths** problem
• Input: digraph $G = (V, E)$ and two vertices $s, t \in V$
• Output: A maximal number of edge-disjoint paths in G
• Paths P_1 and P_2 are **edge-disjoint** if they do not share any edges

This is a special case of the **maximum flow** problem

... where the union of paths defines a **flow**
Let $G = (V, E)$ be a digraph where each edge $e \in E$ has a capacity $c(e) > 0$.

s-t FLOWS
Let $G = (V, E)$ be a digraph where each edge $e \in E$ has a capacity $c(e) > 0$.

An s-t flow assigns a number $f(e)$ to each edge satisfying:

- **Capacity constraints**
 - $0 \leq f(e) \leq c(e)$ for each edge

- **Conservation of flow**
 - $f^{\text{in}}(v) = f^{\text{out}}(v)$ for $v \notin \{s,t\}$

- **Source** $f^{\text{in}}(s) = 0$

- **Sink** $f^{\text{out}}(t) = 0$

This is the value of the flow
DEFINING $f^\text{in}(u)$ AND $f^\text{out}(u)$

\[f^\text{in}(u) = \sum_{e \text{ into } u} f(e) \]

\[f^\text{out}(u) = \sum_{e \text{ out of } u} f(e) \]
MAX s-t FLOW

• Input: digraph $G = (V, E)$ with capacities $c(e)$ for $e \in E$, and two vertices s, t

• Output: a flow from s to t with maximum value i.e., that maximizes $f^{out}(s)$

• Motivation
 • Liquid flowing through pipes
 • Current through electrical networks
 • Internet/telephony traffic routing
 • Also useful for seemingly unrelated problems (next time)
• In this example, max flow is 3
• Note max flow is limited by the sum of capacities out of s
 • … and into t
• Flows vs paths
 • a flow can always be decomposed into “capacity-disjoint” paths
LEMMA 1: DECOMPOSITION OF s-t FLOW INTO CAPACITY-DISJOINT s-t PATHS

- Let f be an s-t flow where $f(e)$ is an integer for each $e \in E$, $f^{in}(s) = 0$ and $\text{value}(f) = k$
- Then there are s-t paths $P_1, P_2, ..., P_k$ such that each edge e appears in $f(e)$ of these paths
- Proof sketch by induction
 - Base case: when $k=1$ there is only one path
• Suppose lemma holds for $k - 1$, show it holds for k (where $k \geq 2$)
• Consider the edges with non-zero flow
• There must exist some s-t path P in these edges (why?)
• Decrease the flow of each edge in P by 1
INDUCTIVE STEP

- Suppose lemma holds for $k - 1$, show it holds for k (where $k \geq 2$)
- Consider the edges with **non-zero flow**
- There must exist some s-t path P in these edges (why?)

Diagram:

- Decrease the flow of each edge in P by 1

- Removing path P with flow 1 changes flow value from k to $k - 1$
- Every vertex still satisfies conservation of flow
- So this is an s-t flow with value $k - 1$
- So the inductive hypothesis applies…
INDUCTIVE STEP

So, there are **s-t paths** $P_1, P_2, \ldots, P_{k-1}$ such that each edge e appears in $f(e)$ of these paths.

And by adding P we can obtain k such paths.

Lemma

- Let f be an s-t flow where $f(e)$ is an integer for each $e \in E$, $f^{\text{in}}(s) = 0$ and $\text{value}(f) = k$.
- Then there are s-t paths P_1, P_2, \ldots, P_k such that each edge e appears in $f(e)$ of these paths.

Removing path P with flow 1 changes flow value from k to $k - 1$.

Every vertex still satisfies conservation of flow.

So this is an **s-t flow** with value $k - 1$.

So the inductive hypothesis applies…
EXAMPLE APPLICATION OF LEMMA 1

• Given a flow of value k where $f(e) \in \{0,1\}$ for all $e \in E$

• The lemma says the flow f can be decomposed into k edge-disjoint paths

• So if our goal is to find k edge-disjoint paths we can just focus in finding such a flow instead
 • (so we don’t need to worry about which edges belong to which paths during the algorithm)

• Can extract paths from such a flow by repeatedly doing: BFS on the non-zero flow edges, identifying an s-t path, and decrementing the flows along that path
HOME EXERCISE

• Find a decomposition of the following flow into capacity-disjoint paths
FLOWS AND CUTS
What is a good upper bound on the value of a flow?

And how do we know a flow is maximal?

Trivial upper bound

Sum of capacities of all edges

Slightly better

\[
\min \left(c^{\text{out}}(s), c^{\text{in}}(t) \right)
\]

where \(c^{\text{out}}(s) = \sum_{e \text{ out of } s} c(e) \) and \(c^{\text{in}}(t) = \sum_{e \text{ into } t} c(e) \)

Tightly bounds max flow in this case...
Estimate using $\min\left(c^{out}(s), c^{in}(t) \right) = 30$

But real answer is 1…

Looks like an edge crossing a cut…
DEFINITIONS: AN s-t CUT AND ITS CAPACITY

- An s-t cut is a partition $(S,V\setminus S)$ where $s \in S$ and $t \in V\setminus S$
- i.e., the partition separates s and t

(Recall S does not need to be connected)

Let $\delta^{out}(S)$ be the set of edges directed out from S
$$\delta^{out}(S) = \{(u, v) \in E : u \in S, v \in V\setminus S\}$$

The capacity of the cut is the sum of the capacities of these edges
$$c^{out}(S) = \sum_{e \in \delta^{out}(S)} c(e)$$
For the edge-disjoint paths problem, where $c(e) = 1$ for all e, cut capacity is just the number of edges crossing the cut.

If an s-t cut S has at most k edges crossing the cut, then are at most k edge-disjoint s-t paths, since each s-t path has an edge crossing the cut.
Lemma 2: if an s-t cut S has capacity k, the value of every flow must be $\leq k$

- **Proof sketch:** for contra assume a flow with value $k' > k$

- By earlier lemma, a flow with value k' can be decomposed into k' capacity-disjoint paths each w/flow 1

- Each such path crosses the cut, and consumes one unit of the cut's capacity (up to k' in total)

- But the cut's capacity is only k, so the paths are not capacity-disjoint! Contradiction.
COROLLARY: MAX FLOW ≤ MIN s-t CUT

• Recall lemma 2: if an s-t cut S has capacity k, the value of every flow must be $\leq k$
• This holds for any s-t cut
• Including the s-t cut S with the minimum capacity
• So, max s-t flow \leq min capacity over all possible s-t cuts
• In fact, it turns out max flow is exactly the min cut capacity
 • So we can solve max flow by finding a min cut...
MIN s-t CUT PROBLEM

• Input: digraph $G = (V, E)$ with capacities $c(e) > 0$ for $e \in E$, and two vertices s, t

• Output: an s-t cut S with minimal capacity $c^{out}(S)$

• This is a natural and useful problem on its own, and we will see some other interesting applications soon…
MAX-FLOW MIN-CUT THEOREM

- **Theorem 3**: every max s-t flow has value equal to the capacity of a min s-t cut
- One of the most beautiful and important results in combinatorial optimization and graph theory
- Diverse applications in CS and math
- We give an **algorithmic proof** of this theorem
 - (showing that one algorithm solves both max-flow and min-cut at the same time)
FORD-FULKERSON METHOD

Algorithm development
(mixed together with proof of max-flow min-cut theorem)
NAÏVE ALGORITHM ATTEMPT

• For simplicity, try edge-disjoint path problem first (unit capacities)
• Greedy idea: find a shortest \(s-t \) path (to use few edges), then repeat on the remaining edges

• Difficult for greedy is to decide on a path permanently
• Unclear how to find a path that belongs in the optimal solution

greedy solution

optimal solution
• Ford-Fulkerson is a more general “local search” algorithm which can undo previous decisions to improve the flow

• Greedy flow can be improved by “pushing back” some flow using an augmenting path through a residual graph

Greedy flow

“augmenting path”

Pushes back the flow on this edge (negating its flow)
Ford-Fulkerson Method

- Ford-Fulkerson is a more general “local search” algorithm which can undo previous decisions to improve the flow.
- Greedy flow can be improved by “pushing back” some flow using an **augmenting path** through a **residual graph**.

So, what's the residual graph, how do we find an augmenting path, and how do we improve the flow?
A residual graph R_f is defined for a given flow f and graph G.

- R_f has the same vertices as G.
- For each edge $e = uv$ in G,
 - If $f(e) < c(e)$, then R_f contains a forward edge (u, v) with the remaining capacity $c(e) - f(e)$.
 - If $f(e) > 0$, then R_f contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be “pushed back”.

Residual Graph

- Greedy flow f
- Forward edge: remaining capacity
- Residual graph for this flow
- Backwards edge: can undo flow
ANOTHER EXAMPLE RESIDUAL GRAPH

- Recall: for each edge $e = uv$ in G,
 - If $f(e) < c(e)$, then R_f contains a **forward** edge (u, v) with the **remaining capacity** $c(e) - f(e)$
 - If $f(e) > 0$, then R_f contains a **backwards** edge (v, u) with **capacity** $f(e)$ representing flow that could be “pushed back”

![Diagram](image-url)