CS 341: ALGORITHMS

Lecture 17: max flow
Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
QUICK REVIEW OF LAST TIME
RECALL: MAX-FLOW MIN-CUT THEOREM

• **Theorem 3**: every max s-t flow has value equal to the capacity of a min s-t cut

• We give an **algorithmic proof** of this theorem
 • (showing that one algorithm solves both max-flow and min-cut at the same time)
FORD-FULKERSON METHOD

Algorithm development
(mixed together with proof of max-flow min-cut theorem)
FORD-FULKERSON METHOD

• Can **undo** previous decisions to improve the flow

• Can effectively “push back” some flow using an **augmenting path** through a **residual graph**

So, what’s the residual graph, how do we find an augmenting path, and how do we improve the flow?
A residual graph R_f is defined for a given flow f and graph G.

R_f has the same vertices as G.

For each edge $e = uv$ in G,

- If $f(e) < c(e)$, then R_f contains a forward edge (u, v) with the remaining capacity $c(e) - f(e)$.
- If $f(e) > 0$, then R_f contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be “pushed back”.

Greedy flow f

Residual graph for this flow

Forward edge: remaining capacity

Backwards edge: can undo flow
ANOTHER EXAMPLE RESIDUAL GRAPH

- Recall: for each edge $e = uv$ in G,
 - If $f(e) < c(e)$, then R_f contains a forward edge (u, v) with the remaining capacity $c(e) - f(e)$
 - If $f(e) > 0$, then R_f contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be “pushed back”

![Flow f with value 2](image1.png)

![Residual graph for this flow](image2.png)
CONTINUING WITH NEW MATERIAL
FORD-FULKERSON METHOD

- Find a **shortest path** P from s to t in the **residual graph**
- If it **improves** the flow, we call it an **augmenting path**
- And use it to **update the flow**

Diagram:
- **Greedy flow** f
- **Forward** edge: remaining capacity
- **Backwards** edge: undo some flow

Residual graph for this flow
FORD-FULKERSON METHOD

• Find a **shortest path** P from s to t in the **residual graph**

• If it **improves** the flow, we call it an **augmenting path**

• And use it to **update the flow**

For each **forward edge** in P, **increase** existing flow

Backwards edge: **undo** some flow

Forward edge: remaining capacity

10
FORD-FULKERSON METHOD

• Find a **shortest path** P from s to t in the **residual graph**
• If it **improves** the flow, we call it an **augmenting path**
• And use it to **update the flow**

For each **backwards edge** in P, decrease existing flow

- **Forward edge:** remaining capacity
- **Backwards edge:** undo some flow
FORD-FULKERSON METHOD

- Find a **shortest path** P from s to t in the **residual graph**
- If it **improves** the flow, we call it an **augmenting path**
- And use it to **update the flow**

![Diagram of Ford-Fulkerson Method](image)

- Original greedy path no longer exists
- **Forward** edge: remaining capacity
- **Backwards** edge: undo some flow

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

$s \quad t$

Residual graph for this flow
FORD-FULKERSON METHOD

• Find a **shortest path** P from s to t in the residual graph

 • If it **improves** the flow, we call it an **augmenting path**

 • And use it to **update the flow**

updated flow

No path from s to t in residual graph. Done!
IMPROVING A FLOW f GIVEN AN AUGMENTING PATH P

- An augmenting path w.r.t a flow f is a **simple** s-t path in R_f

- Let P be an augmenting path w.r.t f

- Let $\text{bottleneck}(f, P)$ be the minimum capacity of an edge in P

- We show this subroutine $\text{augment}(f, P)$ always improves the value of flow f

```python
1 augment(f, P)
2   let b = bottleneck(f, P)
3   for each edge e = (u,v) in P
4     if e is a forward edge
5       f(e) = f(e) + b
6     else if e is a backwards edge
7       let e' = (v,u)
8       f(e') = f(e') - b
```
LEMMA 4: AUGMENT() IMPROVES FLOW f

• Let f be a flow in G with $f^{in}(s) = 0$, and P be an augmenting path w.r.t f

• Let f' be the resulting flow after running augment(f, P)

• Then f' is a flow with value(f') = value(f) + bottleneck(f, P)

• That is, augment(f, P) increases the flow by bottleneck(f, P)
PROOF

• Claim: \(\text{augment}(f, P) \) increases the flow by \(\text{bottleneck}(f, P) \)
• First check \(f' \) is a flow
 • Prove capacity and conservation constraints, and \(f'^{\text{in}}(s) = 0 \)
• Are capacity constraints satisfied?
 • We add/subtract \(\text{bottleneck}(f, P) \) to/from each edge
 • And \(\text{bottleneck}(f, P) \) is the minimum of the smallest remaining capacity, and the current flow
 • So capacity constraints are satisfied
PROOF

• Claim: \(\text{augment}(f, P) \) increases the flow by \(\text{bottleneck}(f, P) \)

• How about conservation of flow?
 • Consider how the flow into and out of each vertex \(u \notin \{s, t\} \) changes as a result of running \(\text{augment}(f, P) \)
 • We show the change in \(f^{\text{in}}(u) \) is the same as the change in \(f^{\text{out}}(u) \)
 • There are 4 cases, depending on whether the edges entering/leaving \(u \) are forward or backward edges
Case 1: forward / forward

Let bottleneck \(f, P = b \)

Both \(f^{in}(u) \) and \(f^{out}(u) \) are increased by bottleneck \(f, P \)

Case 2: backwards / backwards is similar.

Both \(f^{in}(u) \) and \(f^{out}(u) \) are decreased by \(b \)
Case 3: forward / backwards

\[f_{in}(u) = 5 \quad f_{out}(u) = 5 \]

flow \(f \)

\[u \]

\[5/6 \]

\[2/7 \]

\[3/5 \]

residual graph \(R_f \)

\[u \]

\[5 \]

\[1 \]

\[2 \]

\[2 \]

\[3 \]

augmenting path \(P \) in \(R_f \)

forward \quad backwards

Let bottleneck\((f, P) = b\)

\[u \]

\[5/6 \]

\[2+b/7 \]

\[3-b/5 \]

new flow \(f' \)

(after augmenting)

\[f'^{in}(u) = 5 \quad f'^{out}(u) = 5 \]

Added and subtracted \(b \) terms cancel out

Case 4: backwards / forwards is similar.
SHOWING \(f'_{\text{in}}(s) = 0 \)

- Last step in showing \(f' \) is a flow
 - Prove: \(s \) still has no flow into it
- Since \(f \) is a flow, \(f_{\text{in}}(s) = 0 \)
- To get \(f'_{\text{in}}(s) > 0 \), an augmenting path must include an edge into \(s \)
- But then an augmenting path starts at \(s \), then returns to \(s \), forming a cycle -- contradiction!
FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

• Finally we argue \(\text{value}(f') = \text{value}(f) + \text{bottleneck}(f, P) \)
• \(f \) and \(f' \) are flows, so \(\text{value}(f') = f'_{\text{out}}(s) \) and \(\text{value}(f) = f_{\text{out}}(s) \)
• We thus show \(f'_{\text{out}}(s) = f_{\text{out}}(s) + \text{bottleneck}(f, P) \)
• The augmenting path \(P \) is a \textbf{simple} path (leaving \(s \) exactly once)
• And there is no flow into \(s \), so the edge \(e \in P \) leaving \(s \) is a \textbf{forward edge}
• This means \(\text{augment}(f, P) \) \textbf{adds} \(\text{bottleneck}(f, P) \) to \(f(e) \)
• So \(f'_{\text{out}}(s) = f_{\text{out}}(s) + \text{bottleneck}(f, P) \)
FORD-FULKERSON METHOD

• By Lemma 4, starting from any flow \(f \), if we can find an augmenting path \(P \) w.r.t \(f \) in \(R_f \), then we can use \(\text{augment}(f, P) \) to improve our flow

• Ford-Fulkerson does this repeatedly starting from an empty flow

```python
1 FordFulkerson(G=(V,E))
2     for e in E
3         f(e) = 0
4
5 while there is a simple s-t path P in Rf do
6     augment(f, P)
7     and update the residual graph Rf
```
What we have proved so far: **augmenting improves flow.**

We **don’t know yet** if

1. **we can actually obtain the max flow,** or
2. **whether max-flow = min-cut.**

MAX-FLOW MIN-CUT THEOREM PROOF
PROOF STRATEGY

• Claim: when there is no augmenting path, there is a cut with capacity equal to the value of the current flow.

• Proving this will simultaneously
 • prove the max-flow min-cut theorem,
 • prove correctness of the Ford-Fulkerson method,
 • solve the max flow problem, and
 • solve the min cut problem
We actually proved the \(\leq \) direction already (Lemma 2 last time) when discussing upper bounds for max flow.

It remains to prove the \(\geq \) direction.
PROVING MAX FLOW \geq MIN CUT

• Proposition: if f is an s-t flow such that there is no s-t path in the residual graph R_f, then there is an s-t cut S s.t. $\text{value}(f) = c_{\text{out}}(S)$

Understanding the proposition...

If flow value = 2

then cut exists with capacity 2 = flow value

If flow value = 2

then cut exists with capacity 2 = flow value
PROVING THE PROPOSITION

• Since there is no \(s-t \) path in \(R_f \), there is a subset \(S \) of vertices with \(s \in S \), \(t \notin S \) such that \(S \) has no outgoing edges in \(R_f \).

• What does this statement look like?

want to prove: outgoing edges in \(G \) from \(S \) carry the flow

No outgoing edges in \(R_f \) from \(S \)
PROVING THE PROPOSITION

• Since there is no \(s-t \) path in \(R_f \), there is a subset \(S \) of vertices with \(s \in S \), \(t \notin S \) such that \(S \) has no outgoing edges in \(R_f \).

• Claim: \(c^{out}(S) = \text{value}(f) \)

• Consider two types of edges. Type 1:

 • \(uv \) exiting \(S \) in \(G \) (\(uv \in \delta^{out}(S) \) in \(G \), \(u \in S \), \(v \notin S \))

 • Since \(S \) has no outgoing edge in \(R_f \), we know \(uv \notin R_f \)

 • This implies \(f(uv) = c(uv) \), as otherwise \(uv \) would be a forward edge in \(R_f \)
PROVING THE PROPOSITION

• Claim: $c^{\text{out}}(S) = \text{value}(f)$

• Consider two types of edges. Type 2:

 • uv entering S in G

 ($uv \in \delta^{\text{in}}(S)$ in G, $u \notin S, v \in S$)

 • Since S has no outgoing edge in R_f, we know there is no edge $vu \notin R_f$ (note vu would be directed out of S)

 • This implies $f(uv) = 0$, as otherwise vu would be a backwards edge in R_f
We just showed:

- For edge uv directed out of S, $f(uv) = c(uv)$
- For edge uv directed into S, $f(uv) = 0$
- So $f^{out}(S) - f^{in}(S) = c^{out}(S) - 0 = c^{out}(S)$
- This proves the proposition. I.e., given flow f, if there are no s-t paths in R_f, then **there is a cut matching the flow**

Note this was the last thing remaining to prove the min-cut max-flow theorem, and the correctness of Ford-Fulkerson
TIME COMPLEXITY
of the Ford-Fulkerson method
RUNTIME OF FORD-FULKERSON

- Depends on the implementation

```
1 FordFulkerson(G=(V,E))
2     for e in E
3         f(e) = 0
4     while there is a simple s-t path P in Rf do
5         augment(f, P)
6                         and update the residual graph Rf
```

- How do we find an augmenting path?
- How many times do we need to augment before we terminate?
RUNTIME OF FORD-FULKERSON

• Assume we find any arbitrary augmenting path P, using any technique, in $O(n + m)$ time

• Then every time augment(f, P) is run, we know only that the flow increases

• If capacities are integers, the increase is at least 1

• In this case, if max flow is k then runtime is $O(k(n + m))$
 • For max flow we assume a connected graph, so this is $O(km)$
 • Very bad if k is large

If capacities are reals (and in particular some are irrational), this may never terminate!
WORST CASE FOR THIS APPROACH

Figure 26.7 (a) A flow network for which FORD-FULKERSON can take $\Theta(E \mid f^*\mid)$ time, where f^* is a maximum flow, shown here with $\mid f^*\mid = 2,000,000$. The shaded path is an augmenting path with residual capacity 1. (b) The resulting residual network, with another augmenting path whose residual capacity is 1. (c) The resulting residual network.
EDMONDS-KARP APPROACH

• **Use BFS** to find a shortest path (in terms of number of edges) and use that as an augmenting path

• It turns out this always **terminates after** $O(nm)$ **augmenting paths**
 - (even with real capacities)

• BFS takes $O(n + m)$ time; $O(m)$ since the graph is connected

• **So total runtime is** $O(nm^2)$

There are more sophisticated algorithms with $O(V^2E)$ and even $O(V^3)$ runtimes *(optional: CLRS 26.4, 26.5)*

In 2022, researchers found an almost linear time algorithm, which leverages techniques from convex optimization and sophisticated data structures