QUICK REVIEW OF LAST TIME

Recall: Max-flow Min-cut Theorem

Theorem 3: Every max s-t flow has value equal to the capacity of a min s-t cut

We give an algorithmic proof of this theorem
- Showing that one algorithm solves both max-flow and min-cut at the same time)

FORD-FULKERSON METHOD

Algorithm development (mixed together with proof of max-flow min-cut theorem)

Residual Graph
- A residual graph R_f is defined for a given flow f and graph G
- R_f has the same vertices as G
- For each edge $e = uv$ in G,
 - If $f(e) < c(e)$, then R_f contains a forward edge (u, v) with the remaining capacity $c(e) - f(e)$
 - If $f(e) > 0$, then R_f contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be "pushed back"

Ford-Fulkerson Method

Can undo previous decisions to improve the flow
Can effectively “push back” some flow using an augmenting path through a residual graph

Residual graph for this flow

Greedy flow f

Forward edge: remaining capacity

Backwards edge: can undo flow

Improved flow

"Augmenting path" (path that results in an improvement of the flow)
ANOTHER EXAMPLE RESIDUAL GRAPH
- Recall: for each edge $e = uv$ in G,
 - If $f(e) < c(e)$, then R_f contains a forward edge (u, v) with the remaining capacity $c(e) - f(e)$
 - If $f(e) > 0$, then R_f contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be "pushed back"

CONTINUING WITH NEW MATERIAL

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow

FORD-FULKERSON METHOD
- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow
FORD-FULKERSON METHOD

Find a shortest path P from s to t in the residual graph
- If it improves the flow, we call it an augmenting path
- And use it to update the flow

Front page:

IMPROVING A FLOW f
GIVEN AN AUGMENTING PATH P

- An augmenting path w.r.t f is a simple s-t path in R_f
- Let P be an augmenting path w.r.t f
- Let bottleneck(f, P) be the minimum capacity of an edge in P
- We show this subroutine augment(f, P) always improves the value of flow f

LEMMA 4: AUGMENT() IMPROVES FLOW f

Let f be a flow in G with $f^\text{in}(s) = 0$, and P be an augmenting path w.r.t f
- Let f' be the resulting flow after running augment(f, P)
- Then f' is a flow with $\text{value}(f') = \text{value}(f) + \text{bottleneck}(f, P)$
- That is, augment(f, P) increases the flow by bottleneck(f, P)

PROOF

- Claim: augment(f, P) increases the flow by bottleneck(f, P)
- How about conservation of flow?
 - Consider how the flow into and out of each vertex $u \notin \{s, t\}$ changes as a result of running augment(f, P)
 - We show the change in $f^\text{in}(u)$ is the same as the change in $f^\text{out}(u)$
 - There are 4 cases, depending on whether the edges entering/leaving u are forward or backward edges
Case 3: forward / backwards

Let bottleneck\((f, P) = b\)

![Diagram](image)

Case 4: backwards / forwards

is similar.

![Diagram](image)

SHOWING \(f^{in}(s) = 0 \)

- Last step in showing \(f' \) is a flow
 - Prove: \(s \) still has no flow into it
- Since \(f \) is a flow, \(f^{in}(s) = 0 \)
 - To get \(f^{in}(s) > 0 \), an augmenting path must include an edge into \(s \)
 - But then an augmenting path starts at \(s \), then returns to \(s \), forming a cycle -- contradiction!

FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

- Finally we argue \(\text{value}(f') = \text{value}(f) + \text{bottleneck}(f, P) \)
 - \(f \) and \(f' \) are flows, so \(\text{value}(f') = f^{\text{out}}(s) \) and \(\text{value}(f) = f^{\text{in}}(s) \)
 - We thus show \(f^{\text{out}}(s) = f^{\text{in}}(s) + \text{bottleneck}(f, P) \)
- The augmenting path \(P \) is a simple path (leaving \(s \) exactly once)
 - And there is no flow into \(s \), so the edge \(e \in P \) leaving \(s \) is a forward edge
 - This means \(\text{augment}(f, P) \) adds \(\text{bottleneck}(f, P) \) to \(f(e) \)
- So \(f'^{\text{out}}(s) = f'^{\text{in}}(s) + \text{bottleneck}(f, P) \)

FORD-FULKERSON METHOD

- By Lemma 4, starting from any flow \(f \)
 - if we can find an augmenting path \(P \) w.r.t \(f \) in \(R_f \),
 - then we can use \(\text{augment}(f, P) \) to improve our flow
- Ford-Fulkerson does this repeatedly starting from an empty flow

PROOF STRATEGY

Claim: when there is no augmenting path, there is a cut with capacity equal to the value of the current flow.

- Proving this will simultaneously
 - prove the max-flow min-cut theorem,
 - prove correctness of the Ford-Fulkerson method,
 - solve the max flow problem, and
 - solve the min cut problem

MAX-FLOW MIN-CUT THEOREM PROOF
PROVING MAX FLOW = MIN CUT

Two directions:
- max flow ≤ min cut and max flow ≥ min cut

We actually proved the ≤ direction already (Lemma 2 last time) when discussing upper bounds for max flow.

If remains to prove the ≥ direction:

PROVING THE PROPOSITION

- Since there is no s-t path in Rf, there is a subset S of vertices with s ∈ S, t ∉ S such that S has no outgoing edges in Rf.
- What does this statement look like?

PROVING THE PROPOSITION

- Claim: c^in(S) = value(f)
- Consider two types of edges. Type 1:
 - u ∈ entering S in G
 - (u, v) ∈ E(S) in G, u ∈ S, v ∈ S
 - Since S has no outgoing edge in Rf, we know there is no edge (u, v) in Rf
 - This implies f(u) = 0, as otherwise u would be a backwards edge in Rf

PROVING THE PROPOSITION

- We just showed
 - For edge (u, v) directed out of S, f(u) = c(u)
 - For edge (u, v) directed into S, f(u) = 0
 - So c^in(S) = c^in(S) - f(u) = c^in(S) - 0 = c^in(S)
 - This proves the proposition. I.e., given flow f, if there are no s-t paths in Rf, then there is a cut matching the flow.
TIME COMPLEXITY
of the Ford-Fulkerson method

RUNTIME OF FORD-FULKERSON
- Assume we find any arbitrary augmenting path \(P \),
 using any technique, in \(O(n + m) \) time
- Then every time \(\text{augment}(f, P) \) is run,
 we know only that the flow increases
- If capacities are integers, the increase is at least 1
- In this case, if max flow is \(k \) then runtime is \(O(k(n + m)) \)
 - For max flow we assume a connected graph, so this is \(O(km) \)
 - Very bad if \(k \) is large

If capacities are real (and in particular some are irrational),
this may never terminate!

RUNTIME OF FORD-FULKERSON
- Depends on the implementation
- How do we find an augmenting path?
- How many times do we need to augment before we terminate?

WORST CASE FOR THIS APPROACH

EDMONDS-KARP APPROACH
- Use BFS to find a shortest path (in terms of number of edges)
 and use that as an augmenting path
- It turns out this always terminates after \(O(nm) \) augmenting paths
 (even with real capacities)
- BFS takes \(O(n + m) \) time; \(O(n) \) since the graph is connected
- So total runtime is \(O(nm^2) \)

In 2022, researchers found a \textit{near-linear} time algorithm
which leverages techniques from convex optimisation
and sophisticated data structures.