Lecture 18: applications of max flow
Readings: CLRS 26.2

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
MAX BIPARTITE MATCHING
BIPARTITE MATCHING

- **Input:** a bipartite graph $G = (X, Y, E)$
- **Output:** a maximum cardinality set of edges that are vertex disjoint
 - Set S of edges is called a matching if no two edges in S share a vertex
 - A matching is a perfect matching IFF every vertex is matched

Both maximal and perfect
REDUCTION TO MAX FLOW

- Given bipartite $G = (X, Y, E)$ construct $G' = (V', E')$ as follows:
 - $V' = \{s\} \cup X \cup Y \cup \{t\}$ where s and t are new vertices
 - All $e \in E$ appear in E', pointing from X to Y, with $c(e) = 1$
 - Add edges e from s to every $v \in X$, and from every $v \in Y$ to t, with $c(e) = 1$
CORRECTNESS OF THE REDUCTION

• Claim: there is a matching of size k in G IFF there is an s-t flow of value k in G'

• Proof: (⇒) clearly if there is a matching of size k, there is a flow of size k
CORRECTNESS OF THE REDUCTION

• Claim: there is a matching of size k in G if and only if there is an s-t flow of value k in G'

• Proof: (↔) let’s show if there is a flow of size k, then there is a matching of size k
PROOF: FLOW OF SIZE $k \Rightarrow$ MATCHING OF SIZE k

- Decompose flow into k capacity disjoint s-t paths, each with flow 1
- Each path is 3 edges: s to X, X to Y, Y to t
- Each edge from s to X or from Y to t has capacity 1
- So each vertex except for s, t can be used on at most one path
- Removing edges s to X and Y to t gives k vertex-disjoint edges. □
COMPLEXITY

• Given bipartite $G = (X, Y, E)$ construct $G' = (V', E')$ as follows

 - $O(n+m)$ to build G' (simplifies to $O(m)$ if G is connected)
 - max flow is $O(n)$, so $O(nm)$ to run Ford-Fulkerson \Rightarrow total $O(nm)$
MODIFIED REDUCTION (FOR THE NEXT PROOF)

• For edges from X to Y set capacity to ∞ instead of 1

• Does not affect the correctness of the reduction!
 (Each vertex can still only be used once)
MINIMUM VERTEX COVER
(FOR A BIPARTITE GRAPH)
RECALL: MAX-FLOW MIN-CUT THEOREM

• **Theorem 3**: every max s-t flow has value equal to the capacity of a min s-t cut

• Consequence: if the max s-t flow is k, then there is an s-t cut with **capacity** k

 • i.e., the only reason the max flow is limited to k is that there is a cut with capacity k that limits the flow
MINIMUM VERTEX COVER PROBLEM

• **Vertex cover:** given a graph $G = (V, E)$, a set S of vertices is called a **vertex cover**IFF for every $(u, v) \in E$, either $u \in S$ or $v \in S$

• **Minimum vertex cover:** what is the smallest k such that there exists a vertex cover S with $|S| = k$?

Every edge must touch a node in S

The k nodes in S must touch every edge in G

Some more examples of vertex covers
CONNECTING MATCHING AND VERTEX COVER

- **In bipartite graphs**, these problems are related via “duality”
- Explaining their duality involves formulating both problems as linear programming problems – see linear optimization courses
- We study their connection in a more ad-hoc way

 - **Observe**: If there is a matching with k edges, then there is any vertex cover S must have $|S| \geq k$
 - **Why?** The k edges in the matching are vertex disjoint, so k distinct vertices are needed to cover them

 So $|\text{vertex cover}| \geq |\text{max matching}|$

In fact we can prove $|\text{vertex cover}| = |\text{max matching}|$, so can solve with max matching, which we reduced to **max flow**
KÖNIG’S THEOREM

| MAX MATCHING | = | MIN VERTEX COVER |

• Let $k = |\text{max matching}|$ in G. Show \exists vertex cover of size k.

• Recall our reduction from max matching to max flow

• The max s-t flow in G' is k
KÖNIG’S THEOREM

| MAX MATCHING | = | MIN VERTEX COVER |

- Since the max \(s-t \) flow in \(G' \) is \(k \),
- By max-flow min-cut, there is an \(s-t \) cut \(S \) in \(G' \) with capacity \(k \)
- This flow must cross the cut to reach \(t \), and it must consume \(k \) units of capacity crossing the cut
- There are three cases in which capacity can possibly cross the cut
 - (1) it can cross the cut going from \(s \) to \(X \),
 - or (2) it can cross the cut going from \(X \) to \(Y \),
 - or (3) it can cross the cut going from \(Y \) to \(t \)

There cannot be an edge satisfying case 2, or cut capacity would be \(\infty \), not \(k \)!

So only cases 1&3 are possible.
KÖNIG’S THEOREM

| MAX MATCHING | = | MIN VERTEX COVER |

• So capacity can only cross the cut in 2 cases: s to X, Y to t

 Case s to X: via an edge from s to $X - S$ with capacity 1

 Case Y to t: via an edge from $Y \cap S$ to t with capacity 1

• $k = \text{capacity crossing cut} = \# \text{ of such edges}$

• \(\text{total \# vertices in } (X - S) \cup (Y \cap S)\)

So there are exactly k vertices in $(X - S) \cup (Y \cap S)$

Claim: this set of vertices $(X - S) \cup (Y \cap S)$ is a vertex cover for G
KÖNIG’S THEOREM
| MAX MATCHING | = | MIN VERTEX COVER |

- Showing \((X - S) \cup (Y \cap S)\) is a **vertex cover** for \(G\)
- Show every edge in \(G\) must touch some node in \((X - S) \cup (Y \cap S)\)
 - i.e., every edge from \(X\) to \(Y\) touches a node in \((X - S) \cup (Y \cap S)\)
- Suppose not for contra
- Then there is an edge from \(X\) to \(Y\) that does not touch \((X - S) \cup (Y \cap S)\)
- Such an edge must be directed from \(X \cap S\) to \(Y - S\)
- But such an edge has capacity \(\infty\), and would cross the cut, contradicting \(C^{out}(S) = k\)
SOLVING VERTEX COVER

• So $|\text{max matching}| = |\text{min vertex cover}|$ in bipartite graphs
• And we also reduced max bipartite matching to max flow, obtaining an $O(nm)$ algorithm for max bipartite matching
• So we can use the same algorithm to solve min (bipartite) vertex cover in $O(nm)$ time
 • Construct graph G' for max matching, then run max flow
 • Given the resulting flow, extract $|\text{min vertex cover}|$ by summing flows out of s
• Exercise: how can we identify the vertices in the vertex cover?
VERTEX DISJOINT PATHS
VERTEX DISJOINT PATHS

• We already saw max flow can be used to find edge-disjoint paths
 • (and capacity-disjoint paths)
• What if we want s-t paths that are vertex disjoint?
• Two s-t paths P_1 and P_2 are called (internally) vertex-disjoint if they only share the vertices s and t, and no other vertices
VERTEX DISJOINT PATHS

• Can be reduced to maximum edge-disjoint s-t paths
 • Meaning an algorithm for edge-disjoint paths can solve this

• Goal: transform the input graph G into a new graph G' so that for any two paths P_1 and P_2 in G, P_1 and P_2 are vertex-disjoint
 IFF there are two corresponding edge-disjoint paths in G'

• Then we can run MaxEdgeDisjointPaths(G') to identify the vertex-disjoint paths in G
REDUCTION TO EDGE-DISJOINT PATHS

• Let G, s, t be an input to the vertex-disjoint $s-t$ paths problem

• Create a new graph G' as follows

 • For each vertex v in G, add vertices v_{in} and v_{out}, and edge $(v_{\text{in}}, v_{\text{out}})$

 • For each edge $e = (u, v)$ in G, add edge (u, v_{in})

 • For each edge $e = (v, u)$ in G, add edge (v_{out}, u)
EXAMPLE NEW GRAPH CONSTRUCTION

One vertex-disjoint path, but 3 edge-disjoint paths

One vertex-disjoint path, and one edge-disjoint path
EXAMPLE 2 OF NEW GRAPH CONSTRUCTION

\(G\)

- 2 vertex-disjoint path, but
- 3 edge-disjoint paths

\(G'\)

- 2 vertex-disjoint paths, and
- 2 edge-disjoint paths
CORRECTNESS

• Claim: G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths.

Case (➔): if P_1, \ldots, P_k are vertex-disjoint s-t paths in G.

Path P_1 in G
Path P_2 in G
...

Path P'_1 in G'
Path P'_2 in G'
...

For each $P_i = (v_1, v_2, \ldots, v_\ell), v_1 = s, v_\ell = t$, there is a corresponding path in G': $P'_i = (v_{1\text{in}'}, v_{1\text{out}'}, v_{2\text{in}'}, v_{2\text{out}'}, \ldots, v_{\ell\text{in}'}, v_{\ell\text{out}'})$.

• **Claim:** \(G \) contains \(k \) vertex-disjoint \(s-t \) paths \(\text{IFF} \) \(G' \) contains \(k \) edge-disjoint \(s-t \) paths.

Case (\(\Rightarrow \)): if \(P_1, \ldots, P_k \) are vertex-disjoint \(s-t \) paths in \(G \):

- Consider a blue edge in \(P_1' \). Its endpoints \(x_i, x_o \) correspond to \(x \) in \(P_1 \).
- \(x \) cannot be in \(P_2, \ldots, P_k \) by vertex disjointness.
- So \(x_i, x_o \) cannot be in \(P_2', \ldots, P_k' \).
- So this edge cannot be in \(P_2', \ldots, P_k' \).
Case (⇒): if \(P_1, \ldots, P_k \) are vertex-disjoint \(s-t \) paths in \(G \).

Path \(P_1 \) in \(G \)

Path \(P_2 \) in \(G \)

\[
\begin{align*}
\text{Similarly, consider a yellow edge in } P'_1. \\
\text{Its endpoints } x_o, y_i \text{ cannot be in } P'_2 \text{ by vertex disjointness.}
\end{align*}
\]

So this edge \textbf{cannot} be in \(P'_2, \ldots, P'_k \).

So \(P'_1, \ldots, P'_k \) are edge-disjoint!
CORRECTNESS

- **Claim:** \(G \) contains \(k \) vertex-disjoint \(s-t \) paths \textbf{IFF} \(G' \) contains \(k \) edge-disjoint \(s-t \) paths

Case (\(\Leftarrow \)) if \(P'_1, \ldots, P'_k \) are edge-disjoint \(s-t \) paths in \(G' \)

Path \(P'_1 \) in \(G' \)

Path \(P'_2 \) in \(G' \)

...

By construction of \(G' \) every \(s-t \) path visits \(s_i, s_o, \ldots, t_i, t_o \)

(because the vertices of \(G \) are each split into \textbf{in} and \textbf{out} vertices, and an \textbf{in} vertex only points to its corresponding \textbf{out} vertex, while \textbf{out} vertices only point to \textbf{other in} vertices)

So, if \(G' \) contains \(P'_i = (s_{in}, s_{out}, \ldots, t_{in}, t_{out}) \)

then \(G \) contains \(P_i = (s, \ldots, t) \).
CORRECTNESS

- **Claim:** G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths

Case (\leftarrow): if P'_1, \ldots, P'_k are edge-disjoint s-t paths in G'

Suppose some vertex y is in both P_1 and P_2 for contra

Consider the corresponding vertices and edges in G'

If y is in both P_1 and P_2, then by construction, edge (y_i, y_o) appears in P'_1 and P'_2.

But this **contradicts** the edge-disjointness of paths P'_1, \ldots, P'_k.

So, no such y can appear in any two paths in P_1, \ldots, P_k.
ALGORITHM

• Algorithm given graph G and s, t
 • Transform G into G' as described
 • Run MaxEdgeDisjointPaths(G', s, t)
 • Return the result

• This reduces the problem of solving max vertex-disjoint paths to the problem of solving max edge-disjoint paths

• Such a result is typically written
 $\text{MaxVertexDisjointPaths} \leq \text{MaxEdgeDisjointPaths}$
IMPLEMENTATION

• Transforming the graph is easy
• But how do we solve MaxEdgeDisjointPaths\((G', s, t) \)?
 • Can reduce disjoint paths to max flow
 (we mentioned this last time)
 • Max edge disjoint s-t paths in a graph is just a special case of
 max s-t flow where the capacity of each edge is 1
 • So MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths ≤ MaxFlow
• So we let capacity function \(c \) be \(c(e) = 1 \) for all edges \(e \) in \(G' \),
 then run and return MaxFlow\((G', c, s, t) \)
RUNTIME

- Transforming the graph can be done in $O(n + m) = O(m)$ time for a connected graph.
- Then we call `MaxEdgeDisjointPaths(G', s, t)`, which simply calls `MaxFlow(G', c, s, t)`.
- Fork-Fulkerson runs in time $O(km)$ where k is the value of the max flow... can we bound k?
- Recall that in our reduction, the max flow is ultimately going to compute the number of vertex-disjoint s-t paths.
 - Each vertex can be used by at most one of those paths, so there can be at most n such paths.
 - So flow is at most n, which means $k \leq n$, so runtime is $O(nm)$.