BIG-O NOTATION

- **O notation:**

 \[f(n) = O(g(n)) \text{ if there exist constants } c > 0 \text{ and } n_0 > 0 \text{ such that} \]

 \[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0. \]

 Here, the complexity of f is **not higher** than the complexity of g.

- **Ω notation:**

 \[f(n) = \Omega(g(n)) \text{ if there exist constants } c > 0 \text{ and } n_0 > 0 \text{ such that} \]

 \[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0. \]

 Here, the complexity of f is **not lower** than the complexity of g.

- **Θ notation:**

 \[f(n) = \Theta(g(n)) \text{ if there exist constants } c_1, c_2 > 0 \text{ and } n_0 > 0 \text{ such that} \]

 \[c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0. \]

 Here, f and g have **the same complexity**.

- **o notation:**

 \[f(n) = o(g(n)) \text{ if for all constants } c > 0, \text{ there exists a constant } n_0 \text{ such that} \]

 \[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0. \]

 Here, f has **lower complexity** than g.

- **ω notation:**

 \[f(n) = \omega(g(n)) \text{ if for all constants } c > 0, \text{ there exists a constant } n_0 \text{ such that} \]

 \[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0. \]

 Here, f has **higher complexity** than g.

- **Θ notation:**

 \[f(n) = \Theta(g(n)) \text{ if for all constants } c_1, c_2 > 0, \text{ there exists a constant } n_0 \text{ such that} \]

 \[c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0. \]

 Here, f and g have **the same complexity**.

- **$O + \Omega = \Theta$:**

 \[O(f(n)) + \Omega(g(n)) = \Theta(f(n) + g(n)). \]

Example:

- If $f(n) = n^2 + 3n + 1$ and $g(n) = 2n^2$, then $f(n) = O(g(n))$ because

 \[n^2 + 3n + 1 \leq 2n^2 \text{ for all } n \geq 1. \]

Exercise:

- Consider $f(n) = 3n^2 + 5n + 2$ and $g(n) = n^2$. Determine whether $f(n) = O(g(n))$, $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. Justify your answer.
EXERCISE

• Which of the following are true?
 • $n^2 \in \Theta(n^3)$
 • $n^3 \in o(n^2)$
 • $n^3 \in \omega(n^2)$
 • $\log n \in o(n)$
 • $n \log n \in \Omega(n)$
 • $n \log n^2 \in \omega(n \log n)$
 • $n \in \Theta(n \log n)$

EXERCISE

• Which of the following are true?
 • $n^2 \in \Theta(n^3)$ YES
 • $n^3 \in o(n^2)$ YES
 • $n^3 \in \omega(n^2)$ NO
 • $\log n \in o(n)$ YES
 • $n \log n \in \Omega(n)$ YES
 • $n \log n^2 \in \omega(n \log n)$ NO
 • $n \in \Theta(n \log n)$ NO

Intuitively, we have the following correspondences between order notation and growth rates:

- $f(n) \in O(g(n))$ means the growth rate of f is \leq the growth rate of g
- $f(n) \in \omega(g(n))$ means the growth rate of f is $< \omega$ the growth rate of g
- $f(n) \in \Theta(g(n))$ means the growth rate of f is $= \omega$ the growth rate of g
- $f(n) \in \Omega(g(n))$ means the growth rate of f is $\geq \omega$ the growth rate of g

Relationships between Order Notations

- $f(n) \in \Theta(g(n)) \Rightarrow g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \Rightarrow g(n) \in \Theta(f(n))$
- $f(n) \in \omega(g(n)) \Rightarrow g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \Rightarrow g(n) \in \omega(f(n))$
- $f(n) \in \Omega(g(n)) \Rightarrow f(n) \in O(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$

This is included for your notes

Prove that $f(n) \in \Theta(g(n))$ implies $g(n) \in \Theta(f(n))$.

Proof: Suppose $f(n) \in \Theta(g(n))$. Then there exist constants c_1, c_2, n_0 such that

$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$

if $n \geq n_0$. Thus

$0 \leq (1/c_2) f(n) \leq g(n) \leq (1/c_1) f(n)$

if $n \geq n_0$. Define $c'_1 = 1/c_2, c'_2 = 1/c_1$ and $n'_0 = n_0$. Then

$0 \leq c'_2 f(n) \leq g(n) \leq c'_1 f(n)$

if $n \geq n'_0$.

WORKED EXERCISES

1. Let $f(n) = n^2 - 7n - 30$. Prove from first principles that $f(n) \in O(n^2)$.
2. Let $f(n) = n^2 - 7n - 30$. Prove from first principles that $f(n) \in \Omega(n^2)$.
3. Suppose $f(n) = n^2 + n$. Prove from first principles that $f(n) \notin O(n)$.
EXAMPLE 1: \(f(n) = n^2 - 7n - 30 \)

- Want to prove (WIP) from first principles: \(f(n) \in \Omega(n^2) \)
 - More formally: there exist constants \(c > 0, n_0 > 0 \)
 such that for all \(n \geq n_0 \), we have \(0 \leq f(n) \leq cn^2 \)
- Pick a value for \(c \); how about 1?
- Let’s visualize \(c = 1 \)

Seems plausible that \(c = 1 \) will work

Let’s prove this algebraically

\[0 \leq f(n) \leq cn^2 \]

So, the claim holds with \(c = 1, n_0 = 10 \)

EXAMPLE 2: \(f(n) = n^2 - 7n - 30 \)

- WIP from first principles: \(f(n) \in \Omega(n^2) \)
 - More formally: there exist constants \(c > 0, n_0 > 0 \)
 such that for all \(n \geq n_0 \), we have \(0 \leq cn^2 \leq f(n) \)
- Solution:
 - Pick a value for \(c \).
 - How about 1?
 - Must show \(n^2 \leq n^2 - 7n - 30 \)
 - Impossibly! \(c = 1 \) is too large.
 - Let’s try \(c = \frac{1}{2} \)

\[0 \leq \frac{1}{2}n^2 \leq n^2 - 7n - 30 \]

Result: \(c = \frac{1}{2}, n_0 = 18 \) works!

EXAMPLE 3: \(f(n) = n^2 + n \)

- WIP from first principles \(f(n) \in O(n) \). Formally:
 - \(f(n) \in \Theta(n) \)
 - \(\forall c > 0, n_0 > 0 \) \(\forall n \geq n_0 \) \(f(n) < cn \) or \(f(n) > cn \)
 - Consider any arbitrary \(c > 0, n_0 > 0 \)
 - We find some \(n \geq n_0 \) such that \(n^2 + n < 0 \) or \(n^2 + n > cn \)
 - \(n^2 + n > cn \) if \(n^2 + n - cn > 0 \) if \(n(n + 1 - c) > 0 \)
 - For \(n \geq n_0 > 0 \), this holds if \(n + 1 - c > 0 \), equivalently \(n > c = 1 \)
 - So, \(n = \text{max}(c, n_0) \) will suffice

you vs. the guy she tells you not to worry about

\[O(n^2) \quad O(n \log n) \]

COMPARING GROWTH RATES
All of the identities shown hold only if the limits exist.

Limit of an Exponential Function

\[
\lim_{x \to a} b^f(x) = b^{\lim_{x \to a} f(x)}.
\]

Limit of a Logarithm of a Function

\[
\lim_{x \to a} \log_b f(x) = \log_b \left(\lim_{x \to a} f(x) \right)
\]

(Where base \(b > 0 \))

L'Hospital's Rule

- Often we take the limit of \(\frac{f(x)}{g(x)} \) where both \(f(n) \) and \(g(n) \) tend to \(\infty \), or both \(f(n) \) and \(g(n) \) tend to \(0 \).
- Such limits require L'Hospital's rule.
 - This rule says the limit of \(\frac{f(n)}{g(n)} \) in this case is the same as the limit of the derivative.
 - In other words, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} \).
Using the Limit Method: Exercise 1

- Compare growth rate of n^2 and $n^2 - 7n - 30$.

 \[\lim_{n \to \infty} \frac{2^n - n^2}{n^2} = 1 \]

 \[\text{So } n^2 - 7n - 30 \in \Theta(n^2) \]

Using the Limit Method: Exercise 2

- Compare growth rate of $(\ln n)^2$ and $n^{1/2}$.

 \[\lim_{n \to \infty} \frac{\ln n}{n^{1/2}} = \lim_{n \to \infty} \frac{\ln n}{n^{1/2}} = \frac{\ln n}{n^{1/2}} = \frac{\ln n}{n^{1/2}} = 0 \]

 \[\text{So, } (\ln n)^2 \in \Theta(n^{1/2}) \]

Additional Exercises

- Compare the growth rate of the functions $(3 + (-1)^n)n$ and n.

 \[\lim_{n \to \infty} \frac{3 + (-1)^n}{n} = \lim_{n \to \infty} \frac{3 + (-1)^n}{n} = 0 \]

- Compare the growth rates of the functions $f(n) = n|\sin \pi n/2| + 1$ and $g(n) = \sqrt{n}$.

Algebra of Order Notations

- "Monotonic" rules: Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$.

 \[k \cdot f(n) = O(f(n)) \]
 \[(f(n) + g(n)) = \Theta(f(n)) \]
 \[f(n) \cdot g(n) = \Omega(g(n)) \]

- "Summation" rules: Suppose f is a finite set. Then

 \[\sum_{i \in f} k = \sum_{i \in f} k_i = k \cdot \sum_{i \in f} \tilde{k} \]
 \[\sum_{i \in f} \tilde{k} = \sum_{i \in f} \tilde{k} \cdot \sum_{i \in f} \tilde{k} \]
 \[\sum_{i \in f} \tilde{k} = \sum_{i \in f} \tilde{k} \cdot \sum_{i \in f} \tilde{k} \]
Summation rules are commonly used in loop analysis.
Example:
\[\sum_{i=1}^{n} O(i) = O \left(\sum_{i=1}^{n} i \right) = O \left(\frac{n(n+1)}{2} \right) = O(n^2). \]

SEQUENCES

Arithmetic sequence:
\[\sum_{d=0}^{n-1} (a + di) = na + \frac{dn(n - 1)}{2} \in \Theta(n^2). \]

Geometric sequence:
\[\sum_{l=0}^{n-1} ar^l = \begin{cases} a \frac{r^n - 1}{r - 1} \in \Theta(r^n) & \text{if } r > 1 \\ na \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^n}{1 - r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases} \]

SEQUENCES CONTINUED

Arithmetic-geometric sequence:
\[\sum_{d=0}^{n-1} (a + di)r^l = \frac{a}{1 - r} \frac{(a + (n - 1)d)r^n}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2} \]
provided that \(r \neq 1 \).

Harmonic sequence:
\[H_n = \sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n) \]

Miscellaneous Formulae

\[n! \in \Theta(n^{n/2} e^{-n}) \]

\[\text{limit } \in \Theta(n \log n) \]

Another useful formula is
\[\sum_{i=1}^{n} 1 = \frac{n^2}{2} \]
which implies that
\[\sum_{i=1}^{n} \frac{1}{i^2} \in \Theta(1) \]
A sum of powers of integers when \(c \geq 1 \):
\[\sum_{i=1}^{n} i^c \in \Theta(n^{c+1}) \]

LOGARITHM RULES

Logarithm Formulae
1. \(\log_b xy = \log_b x + \log_b y \)
2. \(\log_b \frac{x}{y} = \log_b x - \log_b y \)
3. \(\log_b \frac{1}{x} = -\log_b x \)
4. \(\log_b x^y = y \log_b x \)
5. \(\log_b a = \frac{1}{\log_a b} \)
6. \(\log_b a = \frac{\log_b c}{\log_b a} \)
7. \(a \log_b c = \log_b a^c \)
We typically omit the base, and just write \(\Theta(\log x) \) for this reason.

BASE OF LOGARITHM DOES NOT MATTER!

- Big-O notation does not distinguish between log bases.
- Proof:
 - Fix two constant logarithm bases \(b \) and \(c \).
 - From log rules, we can change from \(\log_b x \) to \(\log_c x \) by using formula: \(\log_b x = \frac{\log_c x}{\log_c b} \).
 - But \(\log_b \) is a constant!
 - So \(\log_b x \in \Theta(\log_2 x) \).

But how do we know how much time \(M \) will take on input \(I \)?

We don’t know how much time an individual step in the program takes.

MODEL OF COMPUTATION

- Before we can analyze the running time of code, we need a precise model of computation.
- We use the Word-RAM model.
 - Each memory location is a word that can hold an integer.
 - Accessing a word of memory takes constant time.
 - Basic operations (arithmetic, shifting, logical operators) take constant time.

Is a word large enough to hold any integer?

List large enough to hold an address of an object in a data structure? Yes if the data structure fits in RAM...

META-ALGORITHM FOR ANALYZING LOOPS

- Identify operations that require only constant time.
- The complexity of a loop is the sum of the complexities of all iterations.
- Analyze independent loops separately and add the results.
- If loops are nested, it often helps to start at the innermost, and proceed outward... but:
 - Sometimes you must express several nested loops together in a single equation (using nested summations).
 - And actually evaluate the nested summations... (can be hard.)

LOOP ANALYSIS
TWO BIG-O ANALYSIS STRATEGIES

- **Strategy 1**:
 - Prove a \(O \) bound and a matching \(\Omega \) bound separately to get a \(\Theta \) bound. *Often easier (but not always)*

- **Strategy 2**:
 - Use \(\Theta \) bounds throughout the analysis and thereby obtain a \(\Theta \) bound for the complexity of the algorithm.

EXAMPLE 1
algorithm: loopAnalysis(n : integer)
(1) sum \(\leftarrow 0 \)
(2) for \(i \leftarrow 1 \) to \(n \)
 do
 for \(j \leftarrow 1 \) to \(i \)
 do
 sum \(\leftarrow \text{sum} + (i - j)^2 \)
 sum \(\leftarrow \lfloor \text{sum} / i \rfloor \)
(3) return (sum)

\[\sum_{i=1}^{n} \Theta(i) = \sum_{i=1}^{n} \Theta(\log i) \]
EXAMPLE 3 (BENTLEY’S PROBLEM, SOLUTION 1)

max := 0;
for i := 1 to n do
 for j := i to n do
 sum := sum + A[k];
 if sum > max then max := sum;

Try to analyze this yourself!
One possible solution is given in these slides...

Strategy 1: big-O and big-\(\Omega\) bounds

\[
T(n) \in \Theta(1) + \sum_{k=1}^{n} \sum_{j=0}^{n} \Theta(1) + \Theta(1) \\
= \sum_{k=1}^{n} \sum_{j=0}^{n} \Theta(1) \\
= \Theta(n^2)
\]

This is the maximum number of iterations that could be performed in this loop.

Recall: Smallest possible value of \(j - i\) for these bounds on \(i, j\)

We will perform at least this much work in every iteration!

Since we have \(\Theta(n^2)\) and \(\Omega(n^2)\), we have proved \(\Theta(n^2)\).

Proving a big-\(\Omega\) bound...

Recall: \(T(n) \in \Omega(\sum_{k=1}^{n} \sum_{j=0}^{n} (j-0))\)

Intuition: \(j - i \in \Theta(n)\) in some iterations. How many iterations? Latent!

To get a good \(\Omega\)-bound, we ask questions like: When do our loops have many iterations? When is our dominant term large?

Many iterations: when our \(j\) loop does \(\Omega(n)\) iterations! For example, when \(i \leq n/2\)

Large dominant term: when \(j\) is much larger than \(i\) (i.e., by a factor of \(n\))

This term does not depend on the loop indexes, so just multiply by the total number of loop iterations...

Smallest possible value of \(j - i\) for these bounds on \(i, j\)

We will perform at least this much work in every iteration!