CS 341: ALGORITHMS

Lecture 2: divide & conquer I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca
ONE DOES NOT SIMPLY UNDERSTAND RECURSION WITHOUT UNDERSTANDING RECURSION

DIVIDE AND CONQUER

Notable algorithms: mergesort, quicksort, binary search, ...
DIVIDE-AND-CONQUER DESIGN STRATEGY

- **divide**: Given a problem instance I, construct one or more smaller problem instances $I_1, ..., I_a$
 - These are called **subproblems**
 - Usually, want subproblems to be small compared to the size of I (e.g., half the size)

- **conquer**: For $1 \leq j \leq a$, solve instance I_j recursively, obtaining solutions $S_1, ..., S_a$

- **combine**: Given solutions $S_1, ..., S_a$, use an appropriate combining function to find the solution S to the problem instance I
 - i.e., $S = \text{Combine}(S_1, ..., S_a)$.
D&C PROTO-ALGORITHM

1. DnC_template(I)
2. if BaseCase(I) return Result(I)
3. subproblems = [I_1, I_2, ..., I_a]
4. subsolutions = []
5. for j = 1..a
6. subsolutions[j] = DnC_template(I_j)
7. return Combine(subsolutions)
CORRECTNESS

- Prove base cases are correct
- Inductively assume subproblems are solved correctly
- Show they are correctly assembled into a solution

```python
1  def DnC_template(I):
2      if BaseCase(I) return Result(I)
3      subproblems = [I_1, I_2, ..., I_a]
4      subsolutions = []
5      for j = 1..a
6          subsolutions[j] = DnC_template(I_j)
7      return Combine(subsolutions)
```
RUNTIME/SPACE COMPLEXITY?

Techniques covered in this lecture

- Model complexities using recurrence relations
- Solve with substitution, master theorem, etc.
Here, a problem instance consists of an array \(A \) of \(n \) integers, which we want to sort in increasing order. The size of the problem instance is \(n \).

divide: Split \(A \) into two subarrays: \(A_L \) consists of the first \(\lfloor \frac{n}{2} \rfloor \) elements in \(A \) and \(A_R \) consists of the last \(\lceil \frac{n}{2} \rceil \) elements in \(A \).

conquer: Run \textit{Mergesort} on \(A_L \) and \(A_R \).

combine: After \(A_L \) and \(A_R \) have been sorted, use a function \textit{Merge} to merge \(A_L \) and \(A_R \) into a single sorted array. Recall that this can be done in time \(\Theta(n) \) with a single pass through \(A_L \) and \(A_R \). We simply keep track of the “current” element of \(A_L \) and \(A_R \), always copying the smaller one into the sorted array.
MERGE: CONQUER AND COMBINE
MERGE SIMULATION

L

4 10 96 98

R

5 12 21 31

O

4 5 10 12 21 31 96 98
PSEUDOCODE FOR MERGESORT

1. Mergesort(A[1..n])
2. if n == 1 then return A
3. nL = ceil(n/2)
4. aL = A[1..nL]
5. aR = A[(nL+1)..n]
6. sL = Mergesort(aL)
7. sR = Mergesort(aR)
8. return Merge(sL, sR)
PSEUDOCODE FOR MERGE

```
Merge(aL[1..nL], aR[1..nR])
aOut[1..(nL+nR)] = empty array
iL = 1; iR = 1; iOut = 1

while iL < nL and iR < nR
    if aL[iL] < aR[iR]
        aOut[iOut] = aL[iL]
        iL++ ; iOut++
    else
        aOut[iOut] = aR[iR]
        iR++ ; iOut++

while iL < nL
    aOut[iOut] = aL[iL]
    iL++ ; iOut++

while iR < nR
    aOut[iOut] = aR[iR]
    iR++ ; iOut++

return aOut
```

There are still elements left in both arrays

Left array is out of elements

Right array is out of elements

Both arrays are out of elements
ANALYSIS OF MERGESORT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Mergesort(A[1..n])</code></td>
</tr>
<tr>
<td>2</td>
<td><code>if n == 1 then return A</code></td>
</tr>
<tr>
<td>3</td>
<td><code>nL = ceil(n/2)</code></td>
</tr>
<tr>
<td>4</td>
<td><code>aL = A[1..nL]</code></td>
</tr>
<tr>
<td>5</td>
<td><code>aR = A[(nL+1)..n]</code></td>
</tr>
<tr>
<td>6</td>
<td><code>sL = Mergesort(aL)</code></td>
</tr>
<tr>
<td>7</td>
<td><code>sR = Mergesort(aR)</code></td>
</tr>
<tr>
<td>8</td>
<td><code>return Merge(sL, sR)</code></td>
</tr>
</tbody>
</table>

So, `MergeSort(A)` takes \(O(n)\) time, plus the time for its two recursive calls!

How can we analyze this recursive program structure?
RECURRENCE RELATIONS
A crucial analysis tool for recursive algorithms

\[\text{Hulk}(n) = \text{Face} - \text{Chin} + \text{Hulk}(n - 1) \]
Suppose \(a_1, a_2, \ldots \), is an infinite sequence of real numbers.

A **recurrence relation** is a formula that expresses a general term \(a_n \) in terms of one or more previous terms \(a_1, \ldots, a_{n-1} \).

A recurrence relation will also specify one or more **initial values** starting at \(a_1 \).

Solving a recurrence relation means finding a formula for \(a_n \) that does not involve any previous terms \(a_1, \ldots, a_{n-1} \).

There are many methods of solving recurrence relations. Two important methods are **guess-and-check** and the **recursion tree method**.
Let $T(n)$ denote the time to run Mergesort on an array of length n.

- **divide** takes time $\Theta(1)$
- **conquer** takes time $T\left(\lceil \frac{n}{2} \rceil \right) + T\left(\lfloor \frac{n}{2} \rfloor \right)$
- **combine** takes time $\Theta(n)$

Recurrence relation:

$$T(n) = \begin{cases}
T\left(\lceil \frac{n}{2} \rceil \right) + T\left(\lfloor \frac{n}{2} \rfloor \right) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1.
\end{cases}$$

$T(n)$ is a function of $T(...)$ so T is a recurrence relation.

How can we compute/solve for $T(n)$?

To make this easier, assume $n = 2^k$, which lets us ignore floors/ceilings.
RECURSION TREE METHOD

Evaluating recurrences with $T(n/c)$ terms

If pants wore pants, would it wear them like this? or like this?

Recursion tree

Compare vs:

$T(n)$

$T(n - 1)$

$T(n - 2)$

$T(n/2)$

$T(n/4)$

$T(n/8)$

$T(n/4)$

$T(n/8)$

...
RECURSION TREE METHOD

msort(n) → cn = cn
msort(n/2) → 2(cn/2) = cn
msort(n/4) → 4(cn/4) = cn
msort(1) → n(c) = cn

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>cn</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>c(n/2)</td>
<td>2c(n/2) = cn</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>c(n/4)</td>
<td>4c(n/4) = cn</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>logn</td>
<td>n</td>
<td>c(n/n) = c</td>
<td>nc(n/n) = cn</td>
</tr>
</tbody>
</table>

Total = cn * #levels
Total = cn log₂(n)

So, mergesort has runtime $O(n \log n)$

Can also compute using a table...
Sample recurrence for two recursive calls on problem size \(n/2 \)

\[
T(n) = \begin{cases}
2T \left(\frac{n}{2} \right) + cn & \text{if } n > 1 \text{ is a power of 2} \\
 d & \text{if } n = 1.
\end{cases}
\]

where \(c \) and \(d \) are constants.

We can solve this recurrence relation when \(n \) is a power of two, by constructing a recursion tree, as follows:

Step 1 Start with a **one-node tree**, say \(N \), having the value \(T(n) \).

Step 2 Grow **two children** of \(N \). These children, say \(N_1 \) and \(N_2 \), have the value \(T(n/2) \), and the value of \(N \) is replaced by \(cn \).

Step 3 Repeat this process recursively, terminating when a node receives the value \(T(1) = d \).

Step 4 Sum the values on each level of the tree, and then compute the **sum of all these sums**; the result is \(T(n) \).
GUESS-AND-CHECK METHOD

- Suppose we have the following recurrence
 \[T(0) = 4 ; \quad T(n) = T(n - 1) + 6n - 5 \]
- **Guess** the form of the solution any way you like
- My approach: the substitution method
 - Recursively substitute the formula into itself
 - Try to identify patterns to **guess** the final closed form
- **Prove** that the guess was correct
SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: \(T(0) = 4 \); \(T(n) = T(n - 1) + 6n - 5 \)

- \(T(n - 1) = T((n - 1) - 1) + 6(n - 1) - 5 \)
- \(T(n) = (T(n - 2) + 6(n - 1) - 5) + 6n - 5 \) \(\text{(substitute)} \)

\[
= T(n - 2) + 2(6n - 5) - 6 \]

(try to preserve structure)

\[
= (T(n - 3) + 6(n - 2) - 5) + 2(6n - 5) - 6 \] \(\text{(substitute)} \)

\[
= T(n - 3) + 3(6n - 5) - 6(1 + 2) \]

... identify patterns and **guess** what happens in the limit

\[
= T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1)) = \text{guess}(n) \]
\[\text{guess}(n) = T(0) + n(6n - 5) - 6\left(1 + 2 + 3 + \cdots + (n - 1)\right) \]

- Use \(1 + 2 + \cdots + (n - 1) = \frac{n(n-1)}{2}\)

\[\text{guess}(n) = 4 + 6n^2 - 5n - 6n(n - 1)/2 \quad \text{(simplify)} \]

- \[= 3n^2 - 2n + 4\]

- Are we done?

- The form of \(\text{guess}(n)\) was an \text{educated guess}.

- To be sure, we must \text{prove} it correct using \text{induction}.
Recall: \(T(0) = 4 \); \(T(n) = T(n - 1) + 6n - 5 \); \(\text{guess}(n) = 3n^2 - 2n + 4 \)

Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

Base case: \(\text{guess}(0) = 3(0)^2 - 2(0) + 4 = T(0) \)
Recall: \(T(0) = 4; T(n) = T(n - 1) + 6n - 5 \); \(\text{guess}(n) = 3n^2 - 2n + 4 \)

Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \), show \(\text{guess}(n + 1) = T(n + 1) \).

\[
T(n + 1) = T(n) + 6(n + 1) - 5 \quad \text{(by definition)}
\]
\[
= \text{guess}(n) + 6(n + 1) - 5 \quad \text{(by inductive hypothesis)}
\]
\[
= 3n^2 - 2n + 4 + 6(n + 1) - 5 \quad \text{(substitute)}
\]
\[
= 3n^2 + 4n + 5 \quad \text{(simplify)}
\]

\[
\text{guess}(n + 1) = 3(n + 1)^2 - 2(n + 1) + 4 \quad \text{(by definition)}
\]
\[
= 3n^2 + 4n + 5 = T(n + 1) \quad \text{(simplify)}
\]
ANOTHER APPROACH

Suppose you look for a while at the previous recurrence:

\[T(0) = 4 \; ; \; T(n) = T(n - 1) + 6n - 5 \]

With some experience, you might just guess it’s quadratic.

If you’re right, it should have the form:

\[an^2 + bn + c \] for some unknown constants \(a, b, c \)

So, just carry the unknown constants into the proof!

You can then determine what the constants must be for the proof to work out.
\[T(0) = 4 \; ; \; T(n) = T(n-1) + 6n - 5 \; ; \; \text{guess}(n) = an^2 + bn + c \]

Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)

this holds iff \(c = 4 \) \(\quad (a, b \text{ are not constrained}) \)

Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \),
show \(\text{guess}(n + 1) = T(n + 1) \).

\[T(n + 1) = T(n) + 6(n + 1) - 5 \quad \text{(by definition)} \]
\[= \text{guess}(n) + 6(n + 1) - 5 \quad \text{(by inductive hypothesis)} \]
\[= an^2 + bn + 4 + 6(n + 1) - 5 \quad \text{(substitute)} \]
\[= an^2 + (b + 6)n + 5 \quad \text{(simplify)} \]
Recall: $\text{guess}(n) = an^2 + bn + c$ where $c = 4$

Inductive case: suppose $\text{guess}(n) = T(n)$ for $n \geq 0$,
show $\text{guess}(n+1) = T(n+1)$.

$T(n + 1) = an^2 + (b + 6)n + 5$ (continue previous slide)

$\text{guess}(n + 1) = a(n + 1)^2 + b(n + 1) + 4$ (by definition and $c = 4$)

$= a(n^2 + 2n + 1) + bn + b + 4$ (simplify, and...)

$= an^2 + (2a + b)n + (a + b + 4)$ (rearrange polynomial)

We want this to be equal to $T(n + 1)$

$an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$

equivalent to $(2a + b) = (b + 6) \text{ and } (a + b + 4) = 5$

first implies $a = 3$ plug a into second to get $b = 5 - 4 - 3 = -2$

So, inductive hypothesis is correct for $a = 3, b = -2, c = 4$
MASTER THEOREM FOR RECURRENCES

- Provides a formula for solving many recurrence relations
- We start with a simplified version

Consider recurrence: \(T(1) = d \); \(T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y) \)

where \(a \geq 1, b \geq 2 \) and \(n \) is a power of \(b \) (i.e., \(n = b^j \) for integer \(j \))

Example corresponding algorithm

```python
if BaseCase(I) return Result(I)
subsolutions = []
for j = 1..a
    let s = subproblem of size n/b
    subsolutions[j] = DnC_algo(s)
solution = combine in n^y time
return solution
```

Simplified Master Theorem

\[
T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}
\]

where \(x = \log_b a. \)
DERIVING THE SIMPLIFIED MASTER THEOREM

\[T(1) = d \; ; \; T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y) \text{ where } a \geq 1, b \geq 2 \text{ and } n = b^j \]

1 node
Problem size n

a nodes
Problem size \(\frac{n}{b} \)

\[\cdots \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

\[\cdots \]

Lvl 0 = 1cn^y

Lvl 1 = ac\left(\frac{n}{b}\right)^y

Lvl 2 = a^2c\left(\frac{n}{b^2}\right)^y

Lvl i = a^ic\left(\frac{n}{b^i}\right)^y

Lvl j = a^jd

Sum over all levels we get

\[T(n) = da^j + \sum_{i=0}^{j-1} ca^i \left(\frac{n}{b^i}\right)^y \]

Let’s rearrange this into a geometric sequence and solve
REARRANGING

- \(T(n) = da^j + \Sigma_{i=0}^{j-1} ca^i \left(\frac{n}{b^i} \right)^y \)
- \(= da^j + \Sigma_{i=0}^{j-1} ca^i \frac{n^y}{(b^i)^y} \)
- \(= da^j + \Sigma_{i=0}^{j-1} ca^i \frac{ny}{(by)^i} \)
- \(= da^j + \Sigma_{i=0}^{j-1} cn^y \frac{a^i}{(by)^i} \)
- \(= da^j + \Sigma_{i=0}^{j-1} cn^y \left(\frac{a}{by} \right)^i \)
- \(= da^j + cn^y \Sigma_{i=0}^{j-1} \left(\frac{a}{by} \right)^i \)

- Let \(x = \log_b a \)
- \(x \) relates # of subproblems to their size
- Rearranging we have \(b^x = a \)
- \(\therefore T(n) = da^j + cn^y \Sigma_{i=0}^{j-1} \left(\frac{b^x}{by} \right)^i \)
- \(= da^j + cn^y \Sigma_{i=0}^{j-1} (b^{x-y})^i \)
- Also \(da^j = d(b^x)^j = d(b^j)^x \)
- Since \(n = b^j \) this is just \(dn^x \)
- \(\therefore T(n) = dn^x + cn^y \Sigma_{i=0}^{j-1} (b^{x-y})^i \)
- and we can simplify: let \(r = b^{x-y} \)
SOLVING THE GEOMETRIC SEQ

- \(T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \) where \(r = b^{x-y} \)

- Geo. Seq. formula: \(\sum_{i=0}^{j-1} ar^i = \begin{cases} a \frac{r^{j-1}}{r-1} \in \Theta(r^j) & \text{if } r > 1 \\ ja \in \Theta(j) & \text{if } r = 1 \\ a \frac{1-r^j}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases} \)

- So different solutions depending on \(r \)
 - Case 1: \(r = b^{x-y} > 1 \iff x - y > 0 \iff x > y \)
 - Case 2: \(r = b^{x-y} = 1 \iff x - y = 0 \iff x = y \)
 - Case 3: \(0 < r = b^{x-y} < 1 \iff x - y < 0 \iff x < y \)
SOLVING THE GEOMETRIC SEQ

- Formula: \(\sum_{i=0}^{j-1} ar^i = \begin{cases}
 a \frac{r^{j-1}}{r-1} \in \Theta(r^j) & \text{if } r > 1 \\
 ja \in \Theta(j) & \text{if } r = 1 \\
 a \frac{1-r^j}{1-r} \in \Theta(1) & \text{if } 0 < r < 1
\end{cases} \)

- **Case 1:** \(r = b^{x-y} > 1 \iff x - y > 0 \iff x > y \)

- \(T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(r^j) \)

- \(T(n) \in \Theta(n^x + n^y r^j) = \Theta(n^x + n^y (b^{x-y})^j) = \Theta(n^x + n^y (b^j)^{x-y}) \)

- Recall \(b^j = n \), so \(T(n) \in \Theta(n^x + n^y n^{x-y}) = \Theta(n^x + n^{y+x-y}) \)

- So \(T(n) \in \Theta(n^x) \)
SOLVING THE GEOMETRIC SEQ

- Formula: \(\sum_{i=0}^{j-1} ar^i = \begin{cases}
 a \frac{r^j - 1}{r - 1} \in \Theta(r^j) & \text{if } r > 1 \\
 ja \in \Theta(j) & \text{if } r = 1 \\
 a \frac{1-r^j}{1-r} \in \Theta(1) & \text{if } 0 < r < 1
\end{cases} \)

- Case 2: \(r = b^{x-y} = 1 \iff x - y = 0 \iff x = y \)

- \(T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(j) \)

- \(T(n) \in \Theta(n^x + jn^y) = \Theta(n^x + jn^x) \) since \(x = y \)

- Recall \(b^j = n \), so \(\log_b b^j = \log_b n \). This means \(j \in \Theta(\log n) \).

- So \(T(n) = \Theta(n^x + n^x \log n) = \Theta(n^x \log n) \)
SOLVING THE GEOMETRIC SEQUENCE

- Formula: $\sum_{i=0}^{j-1} ar^i = \begin{cases}
a \frac{r^j - 1}{r - 1} \in \Theta(r^j) & \text{if } r > 1 \\
ja \in \Theta(j) & \text{if } r = 1 \\
a \frac{1-r^j}{1-r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases}$

- **Case 3:** $0 < r = b^{x-y} < 1 \iff x - y < 0 \iff x < y$

- $T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(1)$

- $T(n) \in \Theta(n^x + n^y)$

- Since $x < y$, we simply have $T(n) \in \Theta(n^y)$
MASTER THEOREM FOR RECURRENCES

- **Simplified version**

Consider recurrence:

\[T(n) = aT \left(\frac{n}{b} \right) + \Theta(n^y) \]

where \(a \geq 1, b \geq 2 \) and \(n = b^j \)

And let \(x = \log_b a \).

\[
T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}
\]
SOME BONUS INTUITION FOR R CASES

Recall: \(T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \) where \(r = b^{x-y} \)

\(x = \log_b a \) i.e. \(\log_{\text{subproblem size}} |\text{subproblems}| \)

<table>
<thead>
<tr>
<th>case</th>
<th>(r)</th>
<th>(y, x)</th>
<th>complexity of (T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>heavy leaves</td>
<td>(r > 1)</td>
<td>(y < x)</td>
<td>(T(n) \in \Theta(n^x))</td>
</tr>
<tr>
<td>balanced</td>
<td>(r = 1)</td>
<td>(y = x)</td>
<td>(T(n) \in \Theta(n^x \log n))</td>
</tr>
<tr>
<td>heavy top</td>
<td>(r < 1)</td>
<td>(y > x)</td>
<td>(T(n) \in \Theta(n^y))</td>
</tr>
</tbody>
</table>

heavy leaves means that the value of the recursion tree is dominated by the values of the leaf nodes.

balanced means that the values of the levels of the recursion tree are constant (except for the last level).

heavy top means that the value of the recursion tree is dominated by the value of the root node.
Recall: simplified master theorem

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y), \text{ where } n \text{ is a power of } b.$$

Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}$$

Questions: $a=?$ $b=?$ $y=?$ $x=?$ which Θ function?
MASTER THEOREM WHEN $b^{j-1} < n < b^j$

- n/b is not always an integer!
 - floors/ceilings are hard
 - not a geometric sequence
- Suppose we get a big-O bound for $b^{j-1} < n < b^j$
 by instead considering the larger problem size b^j

\[
T(n) \leq T(b^j) \in \begin{cases}
\Theta \left((b^j)^x \right) & \text{if } y < x \\
\Theta \left((b^j)^x \log b^j \right) & \text{if } y = x \\
\Theta \left((b^j)^y \right) & \text{if } y > x
\end{cases}
\]

Bonus slide, for you at home
MASTER THEOREM WHEN $b^{j-1} < n < b^j$

\[T(n) \leq T(b^j) \in \begin{cases}
\Theta((b^j)^x) & \text{if } y < x \\
\Theta((b^j)^x \log b^j) & \text{if } y = x \\
\Theta((b^j)^y) & \text{if } y > x
\end{cases} \]

- **Observation:** $b^j < bn$ since n is between b^{j-1} and b^j

\[T(n) \leq T(b^j) \in \begin{cases}
\Theta((bn)^x) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x
\end{cases} \]
MASTER THEOREM WHEN $b^{j-1} < n < b^j$

\[
T(n) \in \begin{cases}
\Theta((bn)^x) & \text{if } y < x \\
\Theta((bn)^x \log bn) & \text{if } y = x \\
\Theta((bn)^y) & \text{if } y > x
\end{cases}
\]

- **Case 1** ($y < x$): \((bn)^x = b^x n^x\) and \(b^x\) is a **constant**
 - So \(T(n) \in O(n^x)\)

- **Case 2** ($y = x$): \((bn)^x \log bn = b^x n^x (\log b + \log n)\)
 - \(T(bn) \in \Theta(b^x n^x \log b + b^x n^x \log n) = \Theta(n^x + n^x \log n)\)
 - So \(T(n) \in O(n^x \log n)\)

- **Case 3** ($y > x$): \((bn)^y = b^y n^y\)
 - So \(T(n) \in O(n^y)\)

Can tackle \(\Omega\) similarly to get \(\theta\)

Bonus slide, for you at home
Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

where n is a power of b. Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } f(n) \in O(n^{x-\epsilon}) \text{ for some } \epsilon > 0 \\
\Theta(n^x \log n) & \text{if } f(n) \in \Theta(n^x) \\
\Theta(f(n)) & \text{if } f(n)/n^{x+\epsilon} \text{ is an increasing function of } n \\
\end{cases}$$

for some $\epsilon > 0$.

Example recurrence: $T(n) = 3T(n/4) + n \log n$
REVISITING THE RECURSION TREE METHOD

- Some recurrences with complex $f(n)$ functions (such as $f(n) = \log n$) can still be solved “by hand”

- Example: Let $n = 2^j$; $T(1) = 1$; $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

<table>
<thead>
<tr>
<th>level</th>
<th># nodes</th>
<th>value at each node</th>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>$j2^j$</td>
<td>$j2^j$</td>
</tr>
<tr>
<td>$j - 1$</td>
<td>2</td>
<td>$(j - 1)2^{j-1}$</td>
<td>$(j - 1)2^j$</td>
</tr>
<tr>
<td>$j - 2$</td>
<td>2^2</td>
<td>$(j - 2)2^{j-2}$</td>
<td>$(j - 2)2^j$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2^{j-1}</td>
<td>2^1</td>
<td>2^j</td>
</tr>
<tr>
<td>0</td>
<td>2^j</td>
<td>1</td>
<td>2^j</td>
</tr>
</tbody>
</table>

Note

$\log_2 n = j$

So

$j2^j = n \log_2 n$

And

$(j - 1)2^{j-1} = \frac{n}{2} \log \frac{n}{2}$
REVISITING THE RECURSION TREE METHOD

- Recall: \(n = 2^j \); \(T(1) = 1 \); \(T(n) = 2T\left(\frac{n}{2}\right) + n \log n \)

Summing the values at all levels of the recursion tree, we have

\[
T(n) = 2^j \left(1 + \sum_{i=1}^{j} i \right) = 2^j \left(1 + \frac{j(j+1)}{2} \right).
\]

Since \(n = 2^j \), we have \(j = \log_2 n \) and \(T(n) \in \Theta(n(\log n)^2) \).