DIVIDE-AND-CONQUER DESIGN STRATEGY

divide: Given a problem instance I, construct one or more smaller problem instances I_1, \ldots, I_n
- These are called subproblems
- Usually, want subproblems to be small compared to the size of I (e.g., half the size)

conquer: For $1 \leq j \leq n$, solve instance I_j recursively, obtaining solutions S_1, \ldots, S_n

combine: Given solutions S_1, \ldots, S_n, use an appropriate combining function to find the solution S to the problem instance I
- i.e., $S = \text{Combine}(S_1, \ldots, S_n)$.

D&C PROTO-ALGORITHM

```
D&C_template(I)
1 if BaseCase(I) return Result(I)
2 subproblems = [I_1, I_2, \ldots, I_n]
3 subsolutions = []
4 for j = 1 to n
5     subsolutions[j] = D&C_template(I_j)
6 return Combine(subsolutions)
```

CORRECTNESS

Prove base cases are correct
Inductively assume subproblems are solved correctly
Show they are correctly assembled into a solution

RUNTIME/SPACE COMPLEXITY?

Techniques covered in this lecture
Model complexities using recurrence relations
Solve with substitution, master theorem, etc.
WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of 15 integers, which we want to sort in increasing order. The size of the problem instance is n.

Divide: Split A into two subarrays, A_L and A_R, consisting of the first $\frac{n}{2}$ and last $\frac{n}{2}$ elements in A.

Pseudocode for Merge

```plaintext
1 MergeSort(A[1..n])
2 if n == 1 then return A
3 aL = cell(n/2)
4 aR = A[(n/2)+1]..n
5 sL = MergeSort(aL)
6 sR = MergeSort(aR)
7 return Merge(sL, sR)
```

Merge Simulation

There are still elements left in both arrays.

Merge: Conquer and Combine

- For $i_L < n_L$ and $i_R < n_R$:
 - $aOut[iOut] = a[i_L]$
 - i_L++
 - $iOut++$

- While $i_L < n_L$: $aOut[iOut] = a[i_L]$
- i_L++

- While $i_R < n_R$: $aOut[iOut] = a[i_R]$
- i_R++

- Return $aOut$

Pseudocode for Merge

```plaintext
Merger(aL[1..nL], aR[1..nR])
1 out[1..nL+nR] = empty array
2 iL = 1; iR = 1; iOut = 1
3 while iL < nL and iR < nR:
4 if aL[iL] < aR[iR]:
5 out[iOut] = aL[iL];
6 iL++;
7 iOut++;
8 else:
9 out[iOut] = aR[iR];
10 iR++;
11 iOut++;
12 while iL < nL:
13 out[iOut] = aL[iL];
14 iL++;
15 iOut++;
16 while iR < nR:
17 out[iOut] = aR[iR];
18 iR++;
19 iOut++;
20 return out
```
ANALYSIS OF MERGESORT

```
1. Mergesort(A[1...n])
2. if n == 1 then return A
3. nl = ceil(n/2)
4. sl = Mergesort(A[1...nl])
5. ar = A[(nl+1)...n]
6. sr = Mergesort(A[sl...ar])
7. return Merge(sl, slr, ar)
```

So, Mergesort(A) takes O(n) time, plus the time for its two recursive calls.

How can we analyze this recursive program structure?

RECURSION RELATIONS

A crucial analysis tool for recursive algorithms

```
Hulk(n) = Face - Chin + Hulk(n-1)
```

MATHEMATICALLY EXPRESSING THE COMPLEXITY OF MERGESORT

Let T(n) denote the time to run Mergesort on an array of length n.

- Hulk takes time H(1)
- Compare takes time T((n/2)) - T((n/2))
- Combine takes time O(n)

Recurrence relation:

```
T(n) = \left\{ 
\begin{array}{ll}
T(\lfloor n/2 \rfloor) & \text{if } n > 1 \\
0 & \text{if } n = 1
\end{array}
\right.
```

How can we compute/solve for T(n)?

To make this easier, assume n = 2^k, which lets us ignore floors/ceilings.

RECURSION TREE METHOD

Evaluating recurrences with \(T(n/2)\) terms

<table>
<thead>
<tr>
<th>Level</th>
<th># of modes</th>
<th>runtime per mode</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>cn</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>cn/2</td>
<td>2(cn/2) = cn</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>cn/4</td>
<td>4(cn/4) = 2cn</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>log n</td>
<td>n</td>
<td>cn</td>
<td>cn</td>
</tr>
</tbody>
</table>

Can also compute using a table...

So, mergesort has runtime \(O(n \log n)\)
RECURSION TREE METHOD FORMALIZED

Sample recurrence for two recursive calls on problem size \(n/2 \):

\[
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
T(n/2) + T(n/2) + n & \text{if } n > 1
\end{cases}
\]

where \(a \) and \(b \) are constants.

We can solve this recurrence relation when \(n \) is a power of two by constructing a recursion tree as follows:

Step 1: Start with a one-node tree. Say \(V \), having the value \(T(n) \).

Step 2: Draw two children. Say \(V_1 \) and \(V_2 \), having the value \(T(n/2) \) and the value \(T(n/2) \), and the value of \(T \) is replaced by \(n \).

Step 3: Repeat this process recursively, terminating when a node is reached that is over the value \(T(1) = 0 \).

Step 4: Sum the values on each level of the tree, and then compute the sum of the leaves over the entire tree.

GUESS-AND-CHECK METHOD

- Suppose we have the following recurrence
 \[
 T(0) = 4; \quad T(n) = T(n-1) + 6n - 5
 \]
- **Guess** the form of the solution **any** way you like
- **My approach:** **the substitution method**
 - Recursively substitute the formula into itself
 - Try to identify patterns to **guess** the final closed form
- **Prove** that the guess was correct

SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: \(T(0) = 4; \ T(n) = T(n-1) + 6n - 5 \)

- \(T(n-1) = T(n-2) + 6(n-1) - 5 \)
- \(T(n) = T(n-2) + 6n - 5 \) \(\Rightarrow \) new terms?
- \(= T(n-2) + 2(6n - 5) - 6 \) \(\Rightarrow \) try to preserve structure
- \(= T(n-3) + 6(n-2) - 5 + 2(6n - 5) - 6 \) \(\Rightarrow \) new terms?
- \(= T(n-3) + 3(6n - 5) - 6(1+2) \) \(\Rightarrow \) new terms?
- \(... \) identify patterns and **guess** what happens in the limit

\[
guess(n) = T(0) + n(6n - 5) - 6(1 + 2 + \ldots + (n - 1)) = 3n^2 - 2n + 4
\]

PROOF

- **Recall:** \(T(0) = 4; \ T(n) = T(n-1) + 6n - 5; \ guess(n) = 3n^2 - 2n + 4 \)
- Want to prove: \(guess(n) = T(n) \) for all \(n \)
 - Base case: \(guess(0) = 3(0)^2 - 2(0) + 4 = T(0) \)
 - **PROOF**

In Math, I use the GUESS & CHECK Method

- **Suppose** we have the following recurrence
 \[
 T(0) = 4; \quad T(n) = T(n-1) + 6n - 5
 \]
- **Guess** the form of the solution **any** way you like
- **My approach:** **the substitution method**
 - Recursively substitute the formula into itself
 - Try to identify patterns to **guess** the final closed form
- **Prove** that the guess was correct

- **Guess** \(T(n) = T(0) + n(6n - 5) - 6(1 + 2 + \ldots + (n - 1)) \)
- Use \(1 + 2 + \ldots + (n - 1) = \frac{n(n-1)}{2} \)
- \(guess(n) = 4 + 6n^2 - 5n - 6n(n-1)/2 \) \(\Rightarrow \) simplify
 - \(= 3n^2 - 2n + 4 \)
- Are we done?
 - The form of \(guess(n) \) was an **educated guess**.
 - To be sure, we must **prove** it correct using induction

PROOF

- **Recall:** \(T(0) = 4; \ T(n) = T(n-1) + 6n - 5; \ guess(n) = 3n^2 - 2n + 4 \)
- Want to prove: \(guess(n) = T(n) \) for all \(n \)
 - **Inductive case:** suppose \(guess(n) = T(n) \) for \(n \geq 0 \)
 - Show \(guess(n+1) = T(n+1) \)
 - \(T(n+1) = T(n) + 6(n+1) - 5 \) \(\Rightarrow \) by definition
 - \(= guess(n) + 6(n+1) - 5 \) \(\Rightarrow \) by inductive hypothesis
 - \(= 3n^2 - 2n + 4 + 6(n+1) - 5 \) \(\Rightarrow \) substitute
 - \(= 3n^2 + 4n + 5 \) \(\Rightarrow \) simplify
 - \(guess(n+1) = 3(n+1)^2 - 2(n+1) + 4 \) \(\Rightarrow \) by definition
 - \(= 3n^2 + 4n + 5 = T(n+1) \) \(\Rightarrow \) simplify
Suppose you look for a while at the previous recurrence:
\[T(n) = 4T(n-1) + 6n - 5 \]
With some experience, you might just guess it's quadratic.
If you're right, it should have the form:
\[an^2 + bn + c \]
for some unknown constants \(a, b, c \).
So, just carry the unknown constants into the proof.
You can then determine what the constants must be for the proof to work out.

Recall: \(\text{guess}(n) = an^2 + bn + c \) where \(c = 4 \)
Inductive case: suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \).
Show \(\text{guess}(n+1) = T(n+1) \).
\[T(n+1) = an^2 + (b+6)n + 5 \]
\[\text{guess}(n+1) = a(n+1)^2 + (b+6)(n+1) + 5 \]
\[= a(n^2 + 2n + 1) + b(n+1) + 5 \]
\[= an^2 + 2an + a + bn + b + 5 \]
\[= an^2 + bn + c \] (rearrange polynomial)
We want this to be equal to \(T(n+1) \).
\[an^2 + (2a+b)n + (a+b+4) = an^2 + bn + c \]
equivalent to \((2a+b) = (b+6) \) and \((a+b+4) = 5 \)
first implies \(a = 3 \) plug a into second to get \(b = 5 - 4 - 3 = -2 \)

\[T(0) = 4; T(n) = T(n-1) + 6n - 5 ; \text{guess}(n) = an^2 + bn + c \]
Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)
Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)
This holds iff \(c = 4 \)
Inductive case: Suppose \(\text{guess}(n) = T(n) \) for \(n \geq 0 \).
Show \(\text{guess}(n+1) = T(n+1) \).
\[T(n+1) = T(n) + 6(n+1) - 5 \] (by definition)
\[= \text{guess}(n) + 6(n+1) - 5 \] (by inductive hypothesis)
\[= an^2 + bn + 4 + 6(n+1) - 5 \] (substitute)
\[= an^2 + (b+6)n + 5 \] (simplify)

Another Approach

Provides a formula for solving many recurrence relations.
We start with a simplified version.
Consider recurrence: \(T(k) = d ; T(n) = aT(\frac{n}{b}) + \Theta(n^c) \)
where \(a \geq 1, b \geq 2 \) and \(n \) is a power of \(b \) (i.e., \(n = b^x \) for integer \(x \))

Master Theorem for Recurrences

- Provides a formula for solving many recurrence relations.
- We start with a simplified version.

Consider recurrence: \(T(k) = d ; T(n) = aT(\frac{n}{b}) + \Theta(n^c) \)
where \(a \geq 1, b \geq 2 \) and \(n \) is a power of \(b \) (i.e., \(n = b^x \) for integer \(x \)).

Formula corresponding algorithm

- **Base Case**: return \(T(1) \)
- **Induction**: \(T(n) = aT(\frac{n}{b}) + \Theta(n^c) \)
- \(T(n) = \Theta(n^c) \) if \(c < \log_b a \)
- \(T(n) = \Theta(n^c \log n) \) if \(c = \log_b a \)
- \(T(n) = \Theta(n^c) \) if \(c > \log_b a \)

Simplified Master Theorem

\[T(n) = \begin{cases}
\Theta(1) & \text{if } c < \log_b a \\
\Theta(n^c \log n) & \text{if } c = \log_b a \\
\Theta(n^c) & \text{if } c > \log_b a
\end{cases} \]

\[T(n) = \begin{cases}
\Theta(1) & \text{if } c < \log_b a \\
\Theta(n^c \log n) & \text{if } c = \log_b a \\
\Theta(n^c) & \text{if } c > \log_b a
\end{cases} \]

\[T(n) = \begin{cases}
\Theta(1) & \text{if } c < \log_b a \\
\Theta(n^c \log n) & \text{if } c = \log_b a \\
\Theta(n^c) & \text{if } c > \log_b a
\end{cases} \]

Rearranging

- \(T(n) = d + \sum_{i=0}^{\log_b n} \Theta(n^i) \)
- Let \(x = \log_b a \)
- \(x \) relates \# of subproblems to their size.
- Rearranging we have \(b^x = a \)
- So \(T(n) = d + \sum_{i=0}^{x} \Theta(n^i) \)
- \(= d + n^0 \sum_{i=0}^{x} \Theta(n^i) \)
- Also \(T(n) = d(b^x)^i = d(b^x)^x \)
- Since \(n = b^x \) this is just \(dx^x \)
- So \(T(n) = dx^x + \sum_{i=0}^{x} \Theta(n^i) \)
- And we can simplify: let \(r = b^{x-1} \)
SOLVING THE GEOMETRIC SEQ

\[T(n) = dn^r + cn^r \sum_{i=0}^{r-1} r^i \] where \(r = b^r \)

- Geo. Seq. formula: \(\sum_{i=0}^{r-1} ar^i = \begin{cases} \frac{a(r^{r+1} - 1)}{r-1} & \text{if } r > 1 \\ ar^0 & \text{if } r = 1 \\ \frac{a}{1-r} & \text{if } 0 < r < 1 \end{cases} \)
- So different solutions depending on \(r \)
 - Case 1: \(r = b^r > 1 \) \(\Rightarrow x - y > 0 \) \(\Rightarrow x > y \)
 - Case 2: \(r = b^r = 1 \) \(\Rightarrow x - y = 0 \) \(\Rightarrow x = y \)
 - Case 3: \(0 < r = b^r < 1 \) \(\Rightarrow x - y < 0 \) \(\Rightarrow x < y \)

\[
\begin{align*}
T(n) &= dn^r + cn^r \sum_{i=0}^{r-1} r^i \\
&= \frac{dn^r}{r-1} + \frac{cn^r}{1-r}
\end{align*}
\]

SOLVING THE GEOMETRIC SEQ

- Formula: \(\sum_{i=0}^{r-1} ar^i = \begin{cases} \frac{a(r^{r+1} - 1)}{r-1} & \text{if } r > 1 \\ ar^0 & \text{if } r = 1 \\ \frac{a}{1-r} & \text{if } 0 < r < 1 \end{cases} \)
- Case 1: \(r = b^r > 1 \) \(\Rightarrow x - y > 0 \) \(\Rightarrow x > y \)
- \(T(n) = dn^r + cn^r \sum_{i=0}^{r-1} r^i \) \(\in dn^r + cn^r \Theta(r^d) \)
- Recall \(b^r = n \), so \(T(n) = \Theta(n^r + n^r r^d) \) \(= \Theta(n^r + n^{r+1}) \)

\[T(n) = \Theta(n^r) \]

SOLVING THE GEOMETRIC SEQ

- Formula: \(\sum_{i=0}^{r-1} ar^i = \begin{cases} \frac{a(r^{r+1} - 1)}{r-1} & \text{if } r > 1 \\ ar^0 & \text{if } r = 1 \\ \frac{a}{1-r} & \text{if } 0 < r < 1 \end{cases} \)
- Case 1: \(r = b^r > 1 \) \(\Rightarrow x - y > 0 \) \(\Rightarrow x > y \)
- \(T(n) = dn^r + cn^r \sum_{i=0}^{r-1} r^i \) \(\in dn^r + cn^r \Theta(r^d) \)
- Recall \(b^r = n \), so \(T(n) = \Theta(n^r + n^r r^d) \) \(= \Theta(n^r + n^{r+1}) \)

\[T(n) = \Theta(n^r) \]

M ASTER THEOREM FOR RECURRENCES

Simplified version

Consider recurrence:
\[T(n) = aT(\frac{n}{b}) + \Theta(n^d) \] where \(a \geq 1, b \geq 2 \) and \(n = b^i \)
And let \(x = \log_b n \)

| \(T(n) \) | \(\Theta(n^d) \) if \(y < x \) | \(\Theta(n^{d+1} \log n) \) if \(y = x \) | \(\Theta(n^y) \) if \(y > x \) |

SOME BONUS INTUITION FOR R CASES

Recall: \(T(n) = dn^r + cn^r \sum_{i=0}^{r-1} i^j \)
\(x = \log_b n \) \(i.e. \) \(\log \text{leaf problem size} \) \(\log \) \(\text{subproblems} \)

\[
\begin{array}{|c|c|c|}
\hline
\text{Case} & r & g \cap f \\
\hline
\text{Heavy hails} & r > 1 & g < r \\
\text{balanced} & r = 1 & g = r \\
\text{heavy top} & r < 1 & g > r \\
\hline
\end{array}
\]

- Heavy hails means that the value of the recursion tree is dominated by the values of the leaf nodes.
- Balanced means that the values of the levels of the recursion tree are constant (except for the last level).
- Heavy top means that the value of the recursion tree is dominated by the value of the root node.
WORKED EXAMPLES
Recall: simplified master theorem
Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence $T(n) = aT\left(\frac{n}{b}\right) + O(n^y)$, where n is a power of b. Denote $x = \log_b n$. Then

$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^x) & \text{if } y > x
\end{cases}$

Questions: $a=?$ $b=?$ $y=?$ $x=?$

which Θ function?

$\Theta(n^x \log n) = \Theta(n^x)$

$a=3$; $b=2$; $y=1$; $x=\log_2 3$

$\Theta(n^x) = \Theta(n^x \log n)$

$a=4$; $b=2$; $y=1$; $x=\log_2 4$

$\Theta(n^x) = \Theta(n^x \log n)$

$a=2$; $b=2$; $y=3/2$; $x=1$

$\Theta(n^{3/2}) = \Theta(n^{3/2} \log n)$

MASTER THEOREM WHEN $b^{j-1} < n < b^j$

- n/b is not always an integer!
- floors/ceilings are hard
- not a geometric sequence

Suppose we get a big-O bound for $b^{j-1} < n < b^j$ by instead considering the larger problem size b^j

- $T(n) \leq T\left(b^j\right) \in \Theta(b^{j} \log b)$ if $y = x$
- $T\left(b^j\right) \leq T\left(b^{j+1}\right) \in \Theta\left(b^{j+1}\right)$ if $y > x$

 Bonus slide, for you at home

CASE 1 ($y < x$):

- $T(n) \in \Theta(b^y \log b)$ if $y < x$
- $T(n) \in \Theta(b^y)$ if $y = x$
- $T(n) \in \Theta(b^y \log b)$ if $y > x$

CASE 2 ($y = x$):

- $T(n) \in \Theta(b^n \log b)$ if $y = x$
- $T(n) \in \Theta(b^n)$ if $y > x$

CASE 3 ($y > x$):

- $T(n) \in \Theta(b^n \log b)$ if $y > x$
- $T(n) \in \Theta(b^n)$ if $y > x$

GENERAL MASTER THEOREM

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, where n is a power of b. Denote $x = \log_b n$. Then

$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } f(n) = O(n^{x-\epsilon}) \text{ for some } \epsilon > 0 \\
\Theta(n^x \log n) & \text{if } f(n) = O(n^{x-1}) \\
\Theta(f(n)) & \text{if } f(n) = O(n^{x+\epsilon}) \text{ for some } \epsilon > 0
\end{cases}$

Must reason about relationship between $f(n)$ and n^x

Example recurrence: $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

REVISITING THE RECURSION TREE METHOD

Some recurrences with complex $f(n)$ functions (such as $f(n) = \log n$) can still be solved "by hand".

Example: Let $n = 2^j$; $T(1) = 1$; $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

Level	Nodes	Value at Each Node	Value of the Value of the
0 | 1 | 0 | 0
1 | 3 | 1 | 2
2 | 7 | $2 + 2 + 2^2$ | $2 + 2 + 2^2$
3 | 15 | $4 + 4 + 4 + 4$ | $4 + 4 + 4 + 4$
4 | 31 | $8 + 8 + 8 + 8 + 8$ | $8 + 8 + 8 + 8 + 8$
5 | 63 | $16 + 16 + 16 + 16 + 16 + 16 + 16$ | $16 + 16 + 16 + 16 + 16 + 16 + 16$

Note

$\log n = j$; $j^2 = n \log n$ and

$U = 2^j - \frac{3}{2}$

Bonus slide, for you at home
REVISITING THE RECURSION TREE METHOD

Recall: \(n = 2^j \), \(T(1) = 1 \), \(T(n) = 2T \left(\frac{n}{2} \right) + n \log n \)

Summing the values at all levels of the recursion tree, we have

\[
T(n) = 2 \left(\sum_{j=0}^{j=\log n} j \right) = 2 \left(\log n \cdot \frac{\log n - 1}{2} \right)
\]

Since \(n = 2^j \), we have \(j = \log n \) and \(T(n) = O(n \log n) \).